An automated method for building cognitive models for turn-based games from a strategy logic

Article Type

Research Article

Publication Title

Games

Abstract

Whereas game theorists and logicians use formal methods to investigate ideal strategic behavior, many cognitive scientists use computational cognitive models of the human mind to predict and simulate human behavior. In this paper, we aim to bring these fields closer together by creating a generic translation system which, starting from a strategy for a turn-based game represented in formal logic, automatically generates a computational model in the Primitive Information Processing Elements (PRIMs) cognitive architecture, which has been validated on various experiments in cognitive psychology. The PRIMs models can be run and fitted to participants’ data in terms of decisions, response times, and answers to questions. As a proof of concept, we run computational modeling experiments on the basis of a game-theoretic experiment about the turn-based game “Marble Drop with Surprising Opponent”, in which the opponent often starts with a seemingly irrational move. We run such models starting from logical representations of several strategies, such as backward induction and extensive-form rationalizability, as well as different player types according to stance towards risk and level of theory of mind. Hereby, response times and decisions for such centipede-like games are generated, which in turn leads to concrete predictions for future experiments with human participants. Such precise predictions about different aspects, including reaction times, eye movements and active brain areas, cannot be derived on the basis of a strategy logic by itself: the computational cognitive models play a vital role and our generic translation system makes their construction more efficient and systematic than before.

DOI

10.3390/g9030044

Publication Date

7-6-2018

Comments

All Open Access, Gold, Green

This document is currently not available here.

Share

COinS