The ramificant determinant
Article Type
Research Article
Publication Title
Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)
Abstract
We give an introduction to the transalgebraic theory of simply connected log- Riemann surfaces with a finite number of infinite ramification points (transalgebraic curves of genus 0). We define the base vector space of transcendental functions and establish by elementary methods some transcendental properties. We introduce the Ramificant deter- minant constructed with transcendental periods and we give a closed-form formula that gives the main applications to transalgebraic curves. We prove an Abel-like theorem and a Torelli-like theorem. Transposing to the transalgebraic curve the base vector space of transcendental functions, they generate the structural ring from which the points of the transalgebraic curve can be recovered algebraically, including infinite ramification points.
DOI
10.3842/SIGMA.2019.086
Publication Date
1-1-2019
Recommended Citation
Biswas, Kingshook and Pérez-Mar, Ricardo, "The ramificant determinant" (2019). Journal Articles. 1011.
https://digitalcommons.isical.ac.in/journal-articles/1011
Comments
Open Access, Gold, Green