Multi-Layer Floorplanning for Partial Reconfiguration of FPGA Devices.

Date of Submission

December 2009

Date of Award

Winter 12-12-2010

Institute Name (Publisher)

Indian Statistical Institute

Document Type

Master's Dissertation

Degree Name

Master of Technology

Subject Name

Computer Science


Advance Computing and Microelectronics Unit (ACMU-Kolkata)


Sur-Kolay, Susmita (ACMU-Kolkata; ISI)

Abstract (Summary of the Work)

Modern Field Programmable Gate Arrays (FPGA) with heterogeneous resources with millions of gates, have been widely used for prototyping large design nowadays. However, large designs might not fit in one FPGA chip. Since, all the modules of a given application might not be active at the same time, the FPGA resources may remain unutilized during the execution of the application. In such applications partial reconfigurability of FPGA helps, where a part of the FPGA chip remains active and inactive part of FPGA could be replaced by another set of modules. Given a schedule of instances with each instance having a set of active modules and their connectivity, a global floorplanning method is essential to reduce the partial reconfiguration overhead while optimizing the performance of the design. This can be done by fixing the position and shapes of common modules across all instances at the same location, while the rest of the temporary modules can be swapped in and out of the board. This is called reconfiguration. Modern FPGAs have different types of resources like CLBs, RAMs and Multipliers. This heterogeneity in resources makes floorplanning in FPGA difficult, especially when the design to be implemented is large. In this dissertation we propose a simulated annealing based multi-layer floorplanning to obtain the fixed positions for the common modules across all instances such that resource requirement of rest of the modules are still satisfied and the total cost of the floorplan is minimized.


ProQuest Collection ID:

Control Number


Creative Commons License

Creative Commons Attribution 4.0 International License
This work is licensed under a Creative Commons Attribution 4.0 International License.


This document is currently not available here.