Multi-script-oriented text detection and recognition in video/scene/born digital images

Article Type

Research Article

Publication Title

IEEE Transactions on Circuits and Systems for Video Technology

Abstract

Achieving good text detection and recognition results for multi-script-oriented images is a challenging task. First, we explore bit plane slicing in order to utilize the advantage of the most significant bit information to identify text components. A new iterative nearest neighbor symmetry is then proposed based on shapes of convex and concave deficiencies of text components in bit planes to identify candidate planes. Further, we introduce a new concept called mutual nearest neighbor pair components based on gradient direction to identify representative pairs of texts in each candidate bit plane. The representative pairs are used to restore words with the help of edge image of the input one, which results in text detection results (words). Second, we propose a new idea by fixing window for character components of arbitrary oriented words based on angular relationship between sub-bands and a fused band. For each window, we extract features in contourlet wavelet domain to detect characters with the help of an SVM classifier. Further, we propose to explore HMM for recognizing characters and words of any orientation using the same feature vector. The proposed method is evaluated on standard databases such as ICDAR, YVT video, ICDAR, SVT, MSRA scene data, ICDAR born digital data, and multi-lingual data to show its superiority to the state of the art methods.

First Page

1145

Last Page

1162

DOI

10.1109/TCSVT.2018.2817642

Publication Date

4-1-2019

This document is currently not available here.

Share

COinS