Cryptographically significant mds matrices over finite fields: A brief survey and some generalized results
Article Type
Research Article
Publication Title
Advances in Mathematics of Communications
Abstract
A matrix is MDS or super-regular if and only if every square submatrices of it are nonsingular. MDS matrices provide perfect diffusion in block ciphers and hash functions. In this paper we provide a brief survey on cryptographically significant MDS matrices - a first to the best of our knowledge. In addition to providing a summary of existing results, we make several contributions. We exhibit some deep and nontrivial interconnections between different constructions of MDS matrices. For example, we prove that all known Vandermonde constructions are basically equivalent to Cauchy constructions. We prove some folklore results which are used in MDS matrix literature. Wherever possible, we provide some simpler alternative proofs. We do not discuss efficiency issues or hardware implementations; however, the theory accumulated and discussed here should provide an easy guide towards efficient implementations.
First Page
779
Last Page
843
DOI
10.3934/amc.2019045
Publication Date
11-1-2019
Recommended Citation
Gupta, Kishan Chand; Pandey, Sumit Kumar; Ray, Indranil Ghosh; and Samanta, Susanta, "Cryptographically significant mds matrices over finite fields: A brief survey and some generalized results" (2019). Journal Articles. 642.
https://digitalcommons.isical.ac.in/journal-articles/642
Comments
Open Access, Gold