Evaluation of word spotting under improper segmentation scenario

Article Type

Research Article

Publication Title

International Journal on Document Analysis and Recognition

Abstract

Word spotting is an important recognition task in large-scale retrieval of document collections. In most of the cases, methods are developed and evaluated assuming perfect word segmentation. In this paper, we propose an experimental framework to quantify the goodness that word segmentation has on the performance achieved by word spotting methods in identical unbiased conditions. The framework consists of generating systematic distortions on segmentation and retrieving the original queries from the distorted dataset. We have tested our framework on several established and state-of-the-art methods using George Washington and Barcelona Marriage Datasets. The experiments done allow for an estimate of the end-to-end performance of word spotting methods.

First Page

361

Last Page

374

DOI

10.1007/s10032-019-00338-9

Publication Date

12-1-2019

Share

COinS