Moduli spaces of vector bundles on a real nodal curve

Article Type

Research Article

Publication Title

Beitrage zur Algebra und Geometrie

Abstract

Let Y be a geometrically irreducible nodal projective algebraic curve of arithmetic genus g≥ 2 defined over R. Let YC= Y× RC. Fix an R-valued point ξ of Picd(Y). For integers r≥ 2 and d, let M(r, ξ) [respectively U(r, ξ)] be the moduli stack of vector bundles (respectively the moduli space of stable vector bundles) of rank r and determinant ξ on Y. We determine the Picard group of M(r, ξ). We compute the Picard group and Brauer group of U(r, ξ).

First Page

615

Last Page

626

DOI

10.1007/s13366-020-00489-5

Publication Date

12-1-2020

This document is currently not available here.

Share

COinS