On geometric ergodicity of additive and multiplicative transformation-based markov chain monte carlo in high dimensions
Article Type
Research Article
Publication Title
Brazilian Journal of Probability and Statistics
Abstract
Recently Dutta and Bhattacharya (Statistical Methodology 16 (2014) 100-116) introduced a novel Markov Chain Monte Carlo methodology that can simultaneously update all the components of high-dimensional parameters using simple deterministic transformations of a one-dimensional random variable drawn from any arbitrary distribution defined on a relevant support. The methodology, which the authors refer to as transformation-based Markov Chain Monte Carlo (TMCMC), greatly enhances computational speed and acceptance rate in high-dimensional problems. Two significant transformations associated with TMCMC are additive and multiplicative transformations. Combinations of additive and multiplicative transformations are also of much interest. In this work, we investigate geometric ergodicity associated with additive and multiplicative TMCMC, along with their combinations, assuming that the target distribution is multi-dimensional and belongs to the super-exponential family; we also illustrate their efficiency in practice with simulation studies.
First Page
570
Last Page
613
DOI
10.1214/15-BJPS295
Publication Date
11-1-2016
Recommended Citation
Dey, Kushal Kr and Bhattacharya, Sourabh, "On geometric ergodicity of additive and multiplicative transformation-based markov chain monte carlo in high dimensions" (2016). Journal Articles. 4339.
https://digitalcommons.isical.ac.in/journal-articles/4339
Comments
Open Access; Hybrid Gold Open Access