Barrier option under Lévy model: A PIDE and Mellin transform approach
Article Type
Research Article
Publication Title
Mathematics
Abstract
We propose a stochastic model to develop a partial integro-differential equation (PIDE) for pricing and pricing expression for fixed type single Barrier options based on the Itô-Lévy calculus with the help of Mellin transform. The stock price is driven by a class of infinite activity Lévy processes leading to the market inherently incomplete, and dynamic hedging is no longer risk free. We first develop a PIDE for fixed type Barrier options, and apply the Mellin transform to derive a pricing expression. Our main contribution is to develop a PIDE with its closed form pricing expression for the contract. The procedure is easy to implement for all class of Lévy processes numerically. Finally, the algorithm for computing numerically is presented with results for a set of Lévy processes.
DOI
10.3390/math4010002
Publication Date
3-1-2016
Recommended Citation
Chandra, Sudip Ratan and Mukherjee, Diganta, "Barrier option under Lévy model: A PIDE and Mellin transform approach" (2016). Journal Articles. 4114.
https://digitalcommons.isical.ac.in/journal-articles/4114
Comments
Open Access; Gold Open Access