Investigating the constraints on primordial features with future cosmic microwave background and galaxy surveys
Article Type
Research Article
Publication Title
Journal of Cosmology and Astroparticle Physics
Abstract
In this article, we do a thorough investigation of the competency of the forthcoming Cosmic Microwave Background (CMB) and Galaxy surveys in probing the features in the primordial power spectrum. Primordial features are specific model-dependent corrections on top of the standard power-law inflationary power spectrum; the functional form being given by different inflationary scenarios. Signature of any significant departure from the feature-less power spectrum will enable us to decipher the intricacies of the inflationary Universe. Here, we delve into three major yet distinct features, namely, Bump feature, Sharp feature signal, and Resonance feature signal. To analyse the features, we adopt a specific template for each feature model. We estimate the possible constraints on the feature parameters by employing Fisher matrix forecast analysis for the upcoming CMB missions such as CMB-S4, CORE-M5, LiteBIRD, PICO conjointly with DESI, and EUCLID galaxy surveys. To this end, we make use of four distinct observations to forecast on the bounds on the model parameters, namely, CMB, Baryon Acoustic Oscillations (BAO), Galaxy Clustering and Gravitational Weak Lensing or Cosmic Shear and their permissible synergy. For large scale structure (LSS) information, we consider different upper limits of scale for different redshifts for the purpose of circumventing the propagation of the errors stemming from the uncertainties on nonlinear scales into the constraints on the feature parameters. A comparative analysis of all three features has been done to estimate relative capabilities of these upcoming observations in shedding light on this crucial aspect of precision cosmology.
DOI
10.1088/1475-7516/2022/09/024
Publication Date
9-1-2022
Recommended Citation
Chandra, Debabrata and Pal, Supratik, "Investigating the constraints on primordial features with future cosmic microwave background and galaxy surveys" (2022). Journal Articles. 2967.
https://digitalcommons.isical.ac.in/journal-articles/2967
Comments
Open Access, Green