Some characterization results on classical and free Poisson thinning
Article Type
Research Article
Publication Title
Random Matrices: Theory and Application
Abstract
Poisson thinning is an elementary result in probability, which is of great importance in the theory of Poisson point processes. In this paper, we record a couple of characterization results on Poisson thinning. We also consider several free probability analogues of Poisson thinning, which we collectively dub as free Poisson, and prove characterization results for them, similar to the classical case. One of these free Poisson thinning procedures arises naturally as a high-dimensional asymptotic analogue of Cochran's theorem from multivariate statistics on the "Wishart-ness"of quadratic functions of Gaussian random matrices. We note the implications of our characterization results in the context of Cochran's theorem. We also prove a free probability analogue of Craig's theorem, another well-known result in multivariate statistics on the independence of quadratic functions of Gaussian random matrices.
DOI
10.1142/S2010326322500423
Publication Date
10-1-2022
Recommended Citation
Mukherjee, Soumendu Sundar, "Some characterization results on classical and free Poisson thinning" (2022). Journal Articles. 2947.
https://digitalcommons.isical.ac.in/journal-articles/2947
Comments
Open Access, Green