The balanced connected subgraph problem

Article Type

Research Article

Publication Title

Discrete Applied Mathematics

Abstract

The problem of computing induced subgraphs that satisfy some specified restrictions arises in various applications of graph algorithms and has been well studied. In this paper, we consider the following [Formula presented] ( [Formula presented] ) problem. The input is a graph G=(V,E), with each vertex in the set V having an assigned color, “ [Formula presented] ” or “ [Formula presented] ”. We seek a maximum-cardinality subset V′⊆V of vertices that is [Formula presented] (having exactly |V′|/2 red vertices and |V′|/2 blue vertices), such that the subgraph induced by the vertex set V′ in G is connected. We show that the BCS problem is NP-hard, even for bipartite graphs G (with red/blue color assignment not necessarily being a proper 2-coloring). Further, we consider this problem on various graph classes, e.g., planar graphs, chordal graphs, trees, split graphs, bipartite graphs with a proper red/blue 2-coloring, and graphs with diameter 2. For each of these classes we either prove NP-hardness or design a polynomial time algorithm.

First Page

111

Last Page

120

DOI

10.1016/j.dam.2020.12.030

Publication Date

10-15-2022

Comments

Open Access, Green

This document is currently not available here.

Share

COinS