Fuzzy Rule-Based Approach for Software Fault Prediction
Article Type
Research Article
Publication Title
IEEE Transactions on Systems, Man, and Cybernetics: Systems
Abstract
Knowing faulty modules prior to testing makes testing more effective and helps to obtain reliable software. Here, we develop a framework for automatic extraction of human understandable fuzzy rules for software fault detection/classification. This is an integrated framework to simultaneously identify useful determinants (attributes) of faults and fuzzy rules using those attributes. At the beginning of the training, the system assumes every attribute (feature) as a useless feature and then uses a concept of feature attenuating gate to select useful features. The learning process opens the gates or closes them more tightly based on utility of the features. Our system can discard derogatory and indifferent attributes and select the useful ones. It can also exploit subtle nonlinear interaction between attributes. In order to demonstrate the effectiveness of the framework, we have used several publicly available software fault data sets and compared the performance of our method with that of some existing methods. The results using tenfold cross-validation setup show that our system can find useful fuzzy rules for fault prediction.
First Page
826
Last Page
837
DOI
10.1109/TSMC.2016.2521840
Publication Date
5-1-2017
Recommended Citation
Singh, Pradeep; Pal, Nikhil R.; Verma, Shrish; and Vyas, Om Prakash, "Fuzzy Rule-Based Approach for Software Fault Prediction" (2017). Journal Articles. 2586.
https://digitalcommons.isical.ac.in/journal-articles/2586