Modeling time series of counts with a new class of INAR(1) model

Article Type

Research Article

Publication Title

Statistical Papers

Abstract

This paper presents a new model for a stationary non-negative first order of integer-valued random variables based on the Pegram and thinning operators. Some fundamental and regression properties of the proposed model are discussed. Maximum likelihood estimation (MLE) by the EM algorithm is applied to estimate the parameters. Numerical studies to compare the proposed model with the thinning and Pegram models and the breakdown point of MLE for the proposed model have been conducted. Finally, a real life count data set has been used to illustrate its application. Comparison with existing models by AIC showed that the proposed model is much better and illustrates its potential usefulness in empirical modeling.

First Page

393

Last Page

416

DOI

10.1007/s00362-015-0704-0

Publication Date

6-1-2017

This document is currently not available here.

Share

COinS