Dilations, wandering subspaces, and inner functions

Article Type

Research Article

Publication Title

Linear Algebra and Its Applications

Abstract

The objective of this paper is to study wandering subspaces for commuting tuples of bounded operators on Hilbert spaces. It is shown that, for a large class of analytic functional Hilbert spaces HK on the unit ball in Cn, wandering subspaces for restrictions of the multiplication tuple Mz=(Mz1,…,Mzn) can be described in terms of suitable HK-inner functions. We prove that HK-inner functions are contractive multipliers and deduce a result on the multiplier norm of quasi-homogeneous polynomials as an application. Along the way we prove a refinement of a result of Arveson on the uniqueness of minimal dilations of pure row contractions.

First Page

263

Last Page

280

DOI

10.1016/j.laa.2017.02.032

Publication Date

6-15-2017

Comments

Open Access, Green

This document is currently not available here.

Share

COinS