Dushnik-Miller dimension of contact systems of d-dimensional boxes
Article Type
Research Article
Publication Title
Electronic Notes in Discrete Mathematics
Abstract
Planar graphs are the graphs with Dushnik-Miller dimension at most three (W. Schnyder, Planar graphs and poset dimension, Order 5, 323-343, 1989). Consider the intersection graph of interior disjoint axis-parallel rectangles in the plane. It is known that if at most three rectangles intersect on a point, then this intersection graph is planar, that is it has Dushnik-Miller dimension at most three. This paper aims at generalizing this from the plane to Rd by considering tilings of Rd with axis parallel boxes, where at most d+1 boxes intersect on a point. Such tilings induce simplicial complexes and we will show that those simplicial complexes have Dushnik-Miller dimension at most d+1.
First Page
467
Last Page
473
DOI
10.1016/j.endm.2017.06.075
Publication Date
8-1-2017
Recommended Citation
Francis, Mathew C. and Gonçalves, Daniel, "Dushnik-Miller dimension of contact systems of d-dimensional boxes" (2017). Journal Articles. 2470.
https://digitalcommons.isical.ac.in/journal-articles/2470