Affine, quasi-affine and co-affine frames on local fields of positive characteristic
Article Type
Research Article
Publication Title
Mathematische Nachrichten
Abstract
The concept of quasi-affine frame in Euclidean spaces was introduced to obtain translation invariance of the discrete wavelet transform. We extend this concept to a local field K of positive characteristic. We show that the affine system generated by a finite number of functions is an affine frame if and only if the corresponding quasi-affine system is a quasi-affine frame. In such a case the exact frame bounds are equal. This result is obtained by using the properties of an operator associated with two such affine systems. We characterize the translation invariance of such an operator. A related concept is that of co-affine system. We show that there do not exist any co-affine frame in L2(K).
First Page
2154
Last Page
2169
DOI
10.1002/mana.201300348
Publication Date
10-1-2017
Recommended Citation
Behera, Biswaranjan and Jahan, Qaiser, "Affine, quasi-affine and co-affine frames on local fields of positive characteristic" (2017). Journal Articles. 2396.
https://digitalcommons.isical.ac.in/journal-articles/2396
Comments
Open Access, Green