A generalized divergence for statistical inference
Article Type
Research Article
Publication Title
Bernoulli
Abstract
The power divergence (PD) and the density power divergence (DPD) families have proven to be useful tools in the area of robust inference. In this paper, we consider a superfamily of divergences which contains both of these families as special cases. The role of this superfamily is studied in several statistical applications, and desirable properties are identified and discussed. In many cases, it is observed that the most preferred minimum divergence estimator within the above collection lies outside the class of minimum PD or minimum DPD estimators, indicating that this superfamily has real utility, rather than just being a routine generalization. The limitation of the usual first order influence function as an effective descriptor of the robustness of the estimator is also demonstrated in this connection.
First Page
2746
Last Page
2783
DOI
10.3150/16-BEJ826
Publication Date
11-1-2017
Recommended Citation
Ghosh, Abhik; Harris, Ian R.; Maji, Avijit; Basu, Ayanendranath; and Pardo, Leandro, "A generalized divergence for statistical inference" (2017). Journal Articles. 2368.
https://digitalcommons.isical.ac.in/journal-articles/2368
Comments
Open Access, Bronze, Green