On Uniform Nonintegrability and Weak Uniform Nonintegrability of a Sequence of Random Variables with Respect to a Nonnegative Array

Article Type

Research Article

Publication Title

Calcutta Statistical Association Bulletin

Abstract

Chandra, Hu and Rosalsky [1] introduced the notion of a sequence of random variables being uniformly nonintegrable and they established a de La Vallée Poussin type criterion for this notion. Inspired by the Chandra, Hu and Rosalsky [1] article, Hu and Peng [2] introduced the weaker notion of a sequence of random variables being weakly uniformly nonintegrable and they also established a de La Vallée Poussin type criterion for this notion using a modification of the Chandra, Hu and Rosalsky [1] argument. In this correspondence, we introduce the more general notion of uniform nonintegrability and weak uniform nonintegrability with respect to an array of nonnegative real numbers together with a de La Vallée Poussin type criterion for this notion. This criterion immediately yields as particular cases the criteria of Chandra, Hu and Rosalsky [1] and Hu and Peng [2], and it has a substantially simpler and more straightforward proof.

First Page

53

Last Page

61

DOI

10.1177/00080683211009115

Publication Date

5-1-2021

Comments

Open Access, Bronze

This document is currently not available here.

Share

COinS