Mathematical model of COVID-19 with comorbidity and controlling using non-pharmaceutical interventions and vaccination
Article Type
Research Article
Publication Title
Nonlinear Dynamics
Abstract
Pandemic is an unprecedented public health situation, especially for human beings with comorbidity. Vaccination and non-pharmaceutical interventions only remain extensive measures carrying a significant socioeconomic impact to defeating pandemic. Here, we formulate a mathematical model with comorbidity to study the transmission dynamics as well as an optimal control-based framework to diminish COVID-19. This encompasses modeling the dynamics of invaded population, parameter estimation of the model, study of qualitative dynamics, and optimal control problem for non-pharmaceutical interventions (NPIs) and vaccination events such that the cost of the combined measure is minimized. The investigation reveals that disease persists with the increase in exposed individuals having comorbidity in society. The extensive computational efforts show that mean fluctuations in the force of infection increase with corresponding entropy. This is a piece of evidence that the outbreak has reached a significant portion of the population. However, optimal control strategies with combined measures provide an assurance of effectively protecting our population from COVID-19 by minimizing social and economic costs.
First Page
1213
Last Page
1227
DOI
10.1007/s11071-021-06517-w
Publication Date
10-1-2021
Recommended Citation
Das, Parthasakha; Upadhyay, Ranjit Kumar; Misra, Arvind Kumar; Rihan, Fathalla A.; Das, Pritha; and Ghosh, Dibakar, "Mathematical model of COVID-19 with comorbidity and controlling using non-pharmaceutical interventions and vaccination" (2021). Journal Articles. 1776.
https://digitalcommons.isical.ac.in/journal-articles/1776
Comments
Open Access, Bronze, Green