A new class of robust two-sample wald-type tests

Article Type

Research Article

Publication Title

International Journal of Biostatistics

Abstract

Parametric hypothesis testing associated with two independent samples arises frequently in several applications in biology, medical sciences, epidemiology, reliability and many more. In this paper, we propose robust Wald-type tests for testing such two sample problems using the minimum density power divergence estimators of the underlying parameters. In particular, we consider the simple two-sample hypothesis concerning the full parametric homogeneity as well as the general two-sample (composite) hypotheses involving some nuisance parameters. The asymptotic and theoretical robustness properties of the proposed Wald-type tests have been developed for both the simple and general composite hypotheses. Some particular cases of testing against one-sided alternatives are discussed with specific attention to testing the effectiveness of a treatment in clinical trials. Performances of the proposed tests have also been illustrated numerically through appropriate real data examples.

DOI

10.1515/ijb-2017-0023

Publication Date

1-1-2018

Comments

All Open Access, Bronze, Green

This document is currently not available here.

Share

COinS