Particle on a torus knot: Anholonomy and Hannay angle
Article Type
Research Article
Publication Title
International Journal of Geometric Methods in Modern Physics
Abstract
The phenomenon of rotation of a vector under parallel transport along a closed path is known as anholonomy. In this paper, we have studied the anholonomy for noncontractible loops - closed paths in a curved surface that do not enclose any area and hence Stokes theorem is not directly applicable. Examples of such closed paths are poloidal and toroidal loops and knots on a torus. The present study is distinct from conventional results on anholonomy for closed paths on S2 since in the latter case all closed paths are contractible or trivial cycles. We find that for some nontrivial cycles the anholonomy cancels out over the complete cycle. Next, we calculate Hannay angle for a particle traversing such noncontractible loops when the torus itself is revolving. Some new and interesting results are obtained especially for poloidal paths that is for paths that encircle the torus ring.
DOI
10.1142/S0219887818500974
Publication Date
6-1-2018
Recommended Citation
Ghosh, Subir, "Particle on a torus knot: Anholonomy and Hannay angle" (2018). Journal Articles. 1374.
https://digitalcommons.isical.ac.in/journal-articles/1374
Comments
All Open Access, Green