Hybrid group recommendation using modified termite colony algorithm: A context towards big data
Article Type
Research Article
Publication Title
Journal of Information and Knowledge Management
Abstract
Since the introduction of Web 2.0, group recommendation systems become an effective tool for consulting and recommending items according to the choices of group of likeminded users. However, the population of dataset consisting of the large number of choices increases the size of storage. As a result, identification of the combination for specific recommendation becomes complex. Hence, the existing group recommendation system should support methodology for handling large data volume with varsity. In this paper, we propose a content-boosted modified termite colony optimisation-based rating prediction algorithm (CMTRP) for group recommendation system. CMTRP employs a hybrid recommendation framework with respect to the big data paradigm to deal with the trend of large data. The framework utilises the communal ratings that help to overcome the scalability problem. The experimental results reveal that CMTRP provides less error in the rating prediction and higher recommendation precision compared with the existing algorithms.
DOI
10.1142/S0219649218500193
Publication Date
6-1-2018
Recommended Citation
Roy, Arup; Banerjee, Soumya; Bhatt, Chintan; Badr, Youakim; and Mallik, Saurav, "Hybrid group recommendation using modified termite colony algorithm: A context towards big data" (2018). Journal Articles. 1365.
https://digitalcommons.isical.ac.in/journal-articles/1365