Rankin–Selberg L-functions and “beyond endoscopy”
Article Type
Research Article
Publication Title
Mathematische Zeitschrift
Abstract
Let f and g be two holomorphic cuspidal Hecke eigenforms on the full modular group SL 2(Z). We show that the Rankin–Selberg L-function L(s, f× g) has no pole at s= 1 unless f= g, in which case it has a pole with residue 3π(4π)kΓ(k)‖f‖2, where ‖ f‖ is the Petersson norm of f. Our proof uses the Petersson trace formula and avoids the Rankin–Selberg method.
First Page
175
Last Page
184
DOI
10.1007/s00209-019-02431-5
Publication Date
10-1-2020
Recommended Citation
Ganguly, Satadal and Mawia, Ramdin, "Rankin–Selberg L-functions and “beyond endoscopy”" (2020). Journal Articles. 129.
https://digitalcommons.isical.ac.in/journal-articles/129