B-partitions, determinant and permanent of graphs
Article Type
Research Article
Publication Title
Transactions on Combinatorics
Abstract
Let G be a graph (directed or undirected) having k number of blocks B 1 ,B 2 , . . . ., B k . A B-partition of G is a partition consists of k vertex-disjoint subgraph (B 1 , B 1 , . . ., B k ) such that B i is an induced subgraph of B i for i = 1, 2, . . ., k: The terms Π i=1k det(B i ); Π i=1k per(B i ) represent the det-summands and the per- summands, respectively, corresponding to the B-partition (B 1 ,B 1 , . . ., B k ). The determinant (permanent) of a graph having no loops on its cut-vertices is equal to the summation of the det-summands (per-summands), corresponding to all possible B-partitions. In this paper, we calculate the determinant and the permanent of classes of graphs such as block graph, block graph with negatives cliques, signed unicyclic graph, mixed complete graph, negative mixed complete graph, and star mixed block graphs.
First Page
37
Last Page
54
DOI
10.22108/toc.2017.105288.1508
Publication Date
9-1-2018
Recommended Citation
Singh, Ranveer and Bapat, Ravindra B., "B-partitions, determinant and permanent of graphs" (2018). Journal Articles. 1246.
https://digitalcommons.isical.ac.in/journal-articles/1246