Rough-fuzzy circular clustering for color normalization of histological images
Article Type
Research Article
Publication Title
Fundamenta Informaticae
Abstract
Color disagreement among histological images may affect the performance of computeraided histological image analysis. So, one of the most important and challenging tasks in histological image analysis is to diminish the color variation among the images, maintaining the histological information contained in them. In this regard, the paper proposes a new circular clustering algorithm, termed as rough-fuzzy circular clustering. It integrates judiciously the merits of rough-fuzzy clustering and cosine distance. The rough-fuzzy circular clustering addresses the uncertainty due to vagueness and incompleteness in stain class definition, as well as overlapping nature of multiple contrasting histochemical stains. The proposed circular clustering algorithm incorporates saturation-weighted hue histogram, which considers both saturation and hue information of the given histological image. The efficacy of the proposed method, along with a comparison with other state-of-the-art methods, is demonstrated on publicly available hematoxylin and eosin stained fifty-eight benchmark histological images.
First Page
103
Last Page
117
DOI
10.3233/FI-2019-1756
Publication Date
1-1-2019
Recommended Citation
Maji, Pradipta and Mahapatra, Suman, "Rough-fuzzy circular clustering for color normalization of histological images" (2019). Journal Articles. 1071.
https://digitalcommons.isical.ac.in/journal-articles/1071