Differential and subdifferential properties of symplectic eigenvalues

Date of Submission

April 2021

Date of Award

4-1-2022

Institute Name (Publisher)

Indian Statistical Institute

Document Type

Doctoral Thesis

Degree Name

Doctor of Philosophy

Subject Name

Mathematics

Department

Theoretical Statistics and Mathematics Unit (TSMU-Delhi)

Supervisor

Jain, Tanvi (TSMU-Delhi; ISI)

Abstract (Summary of the Work)

A real 2n × 2n matrix M is called a symplectic matrix if M T JM = J, where J is the 2n × 2n matrix given by J = ( O In −In O ) and In is the n × n identity matrix. A result on symplectic matrices, generally known as Williamson’s theorem, states that for any 2n × 2n positive definite matrix A there exists a symplectic matrix M such that M T AM = D ⊕ D where D is an n × n positive diagonal matrix with diagonal entries 0 < d1(A) ≤ · · · ≤ dn(A) called the symplectic eigenvalues of A. In this thesis, we study differentiability and analyticity properties of symplectic eigenvalues and corresponding symplectic eigenbasis. In particular, we prove that simple symplectic eigenvalues are infinitely differentiable and compute their first order derivative. We also prove that symplectic eigenvalues and corresponding symplectic eigenbasis for a real analytic curve of positive definite matrices can be chosen real analytically. We then derive an analogue of Lidskii’s theorem for symplectic eigenvalues as an application of our analysis. We study various subdifferential properties of symplectic eigenvalues such as Fenchel subdifferentials, Clarke subdifferentials and Michel-Penot subdifferentials. We show that symplectic eigenvalues are directionally differentiable and derive the expression of their first order directional derivatives

Comments

ProQuest Collection ID: https://www.proquest.com/pqdtlocal1010185/dissertations/fromDatabasesLayer?accountid=27563

Control Number

ISILib-TH521

Creative Commons License

Creative Commons Attribution 4.0 International License
This work is licensed under a Creative Commons Attribution 4.0 International License.

DOI

http://dspace.isical.ac.in:8080/jspui/handle/10263/2146

Share

COinS