"Design, Analysis of Security and Cryptanalysis of Message Authenticati" by Suprita Talnikar Dr.

Design, Analysis of Security and Cryptanalysis of Message Authentication Codes

Date of Submission

December 2022

Date of Award

12-1-2023

Institute Name (Publisher)

Indian Statistical Institute

Document Type

Doctoral Thesis

Degree Name

Doctor of Philosophy

Subject Name

Computer Science

Department

Applied Statistics Unit (ASU-Kolkata)

Supervisor

Nandi, Mridul (ASU-Kolkata; ISI)

Abstract (Summary of the Work)

This thesis is a compilation of various message authentication codes having beyond the birthday bound (BBB) security. Kicking off with preliminary development in chapter 1, it proceeds to introduce the nEHtM (nonce-based Enhanced Hash-then-Mask) MAC in chapter 2, which is BBB-secure when nonce misuse occurs, through the concept of faulty nonces. The construction is based on a single block cipher, used on the inputs after they undergo a domain-separation. Next, chapter 3 tackles the security and cryptanalysis of MAC constructions that use pseudorandom permutations as primitives by introducing the construction PDMMAC (Permutation-based Davies-Meyer MAC) and its variants. The work on obtaining pseudorandom functions from PRPs by [53] lead to our exploration of PRP-based MACs, and one of our constructions was inspired by the DWCDM of [62]. This was instrumental in the search for an inverse-free permutation-based MAC with a single instance of permutation. This is addressed in chapter 4 through the p-EDM (permutation-based Encrypted Davies-Meyer), which follows the trend of constructing n-bit to n-bit PRFs by summing smaller constructions such as the Even-Mansour and the Davies-Meyer, like the SoEM and SoKAC constructions of [53] and the PDMMAC and variant constructions of [47] before it. The BBB security is again tight. Two interesting treatments of the DbHtS construction [61] can be found in chapters 5 and 6. A permutation-based version, dubbed p-DbHtS (permutation- based Double-block Hash-then-Sum) is proven to possess BBB security and a matching attack provided. Finally, a block cipher-based version of the original construction is shown to have BBB security in the multi-user setting for underlying hash functions that are constructed without the use of block Ciphers. Furthermore, each chapter extends Patarin’s Mirror Theory to provide partial bounds for solutions to a system of affine bivariate equations and non-equations satisfying certain conditions

Comments

ProQuest Collection ID: https://www.proquest.com/pqdtlocal1010185/dissertations/fromDatabasesLayer?accountid=27563

Control Number

ISILib-TH

Creative Commons License

Creative Commons Attribution 4.0 International License
This work is licensed under a Creative Commons Attribution 4.0 International License.

DOI

http://dspace.isical.ac.in:8080/jspui/handle/10263/2146

Share

COinS