A Geometry-Based Strategic Placement of RISs in Millimeter Wave Device to Device Communication
Document Type
Conference Article
Publication Title
Communications in Computer and Information Science
Abstract
Recently, reconfigurable intelligent surfaces (RISs) have been introduced in millimeter wave (mmWave) device to device (D2D) communication scenarios to provide seamless connection and high data rate to a pair of proximity users. However, such high data rate can be achieved, only if the concerned device pair resides in close proximity and a direct line of sight (LoS) link exists between them. The proximity and the LoS link is necessary because of the high propagation and penetration losses of the mmWaves. The direct LoS link between a pair of devices may be blocked easily by static obstacles like buildings and trees. If there is no such direct LoS link between a pair of devices, we can use RIS to form an indirect LoS link between them. However, in that case, proper placement of RISs is necessary to provide such indirect LoS link. In this work, we develop a RIS placement strategy to serve those device pairs who do not have any direct LoS links. In order to provide an indirect LoS link for a requesting device pair, we first use some basic ideas from computational geometry to find out the candidate zones for placing RISs. Next we find the candidate zones for all such requesting device pairs considering the fact that two or more candidate zones may overlap and create a new candidate zone. We construct a graph where each candidate zone represents a vertex and there exist an edge between two overlapping candidate zones. We convert the RIS placement problem to a clique partitioning problem of the graph and use a greedy algorithm to get a near optimal solution. From simulation results, we can see that the strategically placed RISs give better performance in comparison to an existing deployment strategy, which places RISs only on the walls of the building.
First Page
41
Last Page
53
DOI
10.1007/978-3-031-35299-7_4
Publication Date
1-1-2023
Recommended Citation
Sau, Lakshmikanta and Ghosh, Sasthi C., "A Geometry-Based Strategic Placement of RISs in Millimeter Wave Device to Device Communication" (2023). Conference Articles. 594.
https://digitalcommons.isical.ac.in/conf-articles/594