Weighted-Gradient Features for Handwritten Line Segmentation
Document Type
Conference Article
Publication Title
Proceedings - International Conference on Pattern Recognition
Abstract
Text line segmentation from handwritten documents is challenging when a document image contains severe touching. In this paper, we propose a new idea based on Weighted-Gradient Features (WGF) for segmenting text lines. The proposed method finds the number of zero crossing points for every row of Canny edge image of the input one, which is considered as the weights of respective rows. The weights are then multiplied with gradient values of respective rows of the image to widen the gap between pixels in the middle portion of text and the other portions. Next, k-means clustering is performed on WGF to classify middle and other pixels of text. The method performs morphological operation to obtain word components as patches for the result of clustering. The patches in both the clusters are matched to find common patch areas, which helps in reducing touching effect. Then the proposed method checks linearity and non-linearity iteratively based on patch direction to segment text lines. The method is tested on our own and standard datasets, namely, Alaei, ICDAR 2013 robust competition on handwriting context and ICDAR 2015-HTR, to evaluate the performance. Further, the method is compared with the state of art methods to show its effectiveness and usefulness.
First Page
3651
Last Page
3656
DOI
10.1109/ICPR.2018.8546259
Publication Date
11-26-2018
Recommended Citation
Khare, Vijeta; Shivakumara, Palaiahnakote; Navya, B. J.; Swetha, G. C.; Guru, D. S.; Pal, Umapada; and Lu, Tong, "Weighted-Gradient Features for Handwritten Line Segmentation" (2018). Conference Articles. 44.
https://digitalcommons.isical.ac.in/conf-articles/44