A Novel Approach of Mathematical Theory of Shape and Neuro-Fuzzy Based Diagnostic Analysis of Cervical Cancer

Article Type

Research Article

Publication Title

Pathology and Oncology Research


This study aims to detect the abnormal growth of tissue in cervix region for diagnosis of cervical cancer using Pap test of patients. The proposed methodology classifies cervical cancer for pattern recognition either benign or malignant stages using shape and neuro-fuzzy based diagnostic model. In this experiment, firstly the authors segment Pap smear images of cervical cells using fuzzy c-means clustering algorithm and shape theory to classify them according to the presence of abnormality of the cells. Secondly the features extraction process is performed in the part of nucleus and cytoplasm on the squamous and glandular cells and the authors used input variables such as cytoplasm area (CA), cytoplasm circularity (CC), nucleus area (NA), nucleus circularity (NC), nucleus-cytoplasm ratio (NCR), and maximum nucleus brightness (MNB) in fuzzy tools and used fuzzy rules to evaluate the cervical cancer risk status as an output variable. The proposed neuro-fuzzy network system was developed for early detection of cervical cancer. A neural network was trained with 15-Pap image datasets where Levenberg–Marquardt(LM) a feed-forward back-propagation algorithm was used to get the status of the cervical cancer. Out of 15 samples database, 11 data set for training, 2 data set for validation and 2 data set for test were used in the ANN classification system. The presented fuzzy expert system(FES) successfully identified the presence of cervical cancer in the Pap smear images using the extracted features and the use of neuro-fuzzy system(NFS) for the identification of cervical cancer at the early stages and achieve a satisfactory performance with 100% accuracy.

First Page


Last Page




Publication Date