Title

Infection spreading and recovery in a square lattice

Article Type

Research Article

Publication Title

Physical Review E

Abstract

We investigate spreading and recovery of disease in a square lattice, and, in particular, emphasize the role of the initial distribution of infected patches in the network on the progression of an endemic and initiation of a recovery process, if any, due to migration of both the susceptible and infected hosts. The disease starts in the lattice with three possible initial distribution patterns of infected and infection-free sites, viz., infected core patches (ICP), infected peripheral patches (IPP), and randomly distributed infected patches (RDIP). Our results show that infection spreads monotonically in the lattice with increasing migration without showing any sign of recovery in the ICP case. In the IPP case, it follows a similar monotonic progression with increasing migration; however, a self-organized healing process starts for higher migration, leading the lattice to full recovery at a critical rate of migration. Encouragingly, for the initial RDIP arrangement, chances of recovery are much higher with a lower rate of critical migration. An eigenvalue-based semianalytical study is made to determine the critical migration rate for realizing a stable infection-free lattice. The initial fraction of infected patches and the force of infection play significant roles in the self-organized recovery. They follow an exponential law, for the RDIP case, that governs the recovery process. For the frustrating case of ICP arrangement, we propose a random rewiring of links in the lattice allowing long-distance migratory paths that effectively initiate a recovery process. Global prevalence of infection thereby declines and progressively improves with the rewiring probability that follows a power law with the critical migration and leads to the birth of emergent infection-free networks.

DOI

10.1103/PhysRevE.102.052307

Publication Date

11-11-2020

Comments

Open Access, Green

Share

COinS