The topological shadow of F1 -geometry: congruence spaces
Article Type
Research Article
Publication Title
Mathematische Zeitschrift
Abstract
In this paper we introduce congruence spaces, which are topological spaces that are canonically attached to monoid schemes and that reflect closed topological properties. This leads to satisfactory topological characterizations of closed morphisms and closed immersions as well as separated and proper morphisms. We study congruence spaces thoroughly and extend standard results from usual scheme theory to monoid schemes: a closed immersion is the same as an affine morphism for which the pullback of sections is surjective; a morphism is separated if and only if the image of the diagonal is a closed subset of the congruence space; a valuative criterion for separated and proper morphisms.
DOI
10.1007/s00209-023-03425-0
Publication Date
2-1-2024
Recommended Citation
Lorscheid, Oliver and Ray, Samarpita, "The topological shadow of F1 -geometry: congruence spaces" (2024). Journal Articles. 5153.
https://digitalcommons.isical.ac.in/journal-articles/5153
Comments
Open Access; Green Open Access