Circular Clustering in Fuzzy Approximation Spaces for Color Normalization of Histological Images

Article Type

Research Article

Publication Title

IEEE Transactions on Medical Imaging


One of the foremost and challenging tasks in hematoxylin and eosin stained histological image analysis is to reduce color variation present among images, which may significantly affect the performance of computer-aided histological image analysis. In this regard, the paper introduces a new rough-fuzzy circular clustering algorithm for stain color normalization. It judiciously integrates the merits of both fuzzy and rough sets. While the theory of rough sets deals with uncertainty, vagueness, and incompleteness in stain class definition, fuzzy set handles the overlapping nature of histochemical stains. The proposed circular clustering algorithm works on a weighted hue histogram, which considers both saturation and local neighborhood information of the given image. A new dissimilarity measure is introduced to deal with the circular nature of hue values. Some new quantitative measures are also proposed to evaluate the color constancy after normalization. The performance of the proposed method, along with a comparison with other state-of-the-art methods, is demonstrated on several publicly available standard data sets consisting of hematoxylin and eosin stained histological images.

First Page


Last Page




Publication Date