Stable random fields, Patterson–Sullivan measures and extremal cocycle growth

Article Type

Research Article

Publication Title

Probability Theory and Related Fields


We study extreme values of group-indexed stable random fields for discrete groups G acting geometrically on spaces X in the following cases: (1) G acts properly discontinuously by isometries on a CAT(-1) space X, (2) G is a lattice in a higher rank Lie group, acting on a symmetric space X, and (3) G is the mapping class group of a surface acting on its Teichmüller space. The connection between extreme values and the geometric action is mediated by the action of the group G on its limit set equipped with the Patterson–Sullivan measure. Based on motivation from extreme value theory, we introduce an invariant of the action called extremal cocycle growth which measures the distortion of measures on the boundary in comparison to the movement of points in the space X and show that its non-vanishing is equivalent to finiteness of the Bowen–Margulis measure for the associated unit tangent bundle U(X/G) provided X/G has non-arithmetic length spectrum. As a consequence, we establish a dichotomy for the growth-rate of a partial maxima sequence of stationary symmetric α-stable (0 < α< 2) random fields indexed by groups acting on such spaces. We also establish analogous results for normal subgroups of free groups.

First Page


Last Page




Publication Date



Open Access, Green

This document is currently not available here.