Dominant bacterial phyla in caves and their predicted functional roles in C and N cycle

Article Type

Research Article

Publication Title

BMC Microbiology


Background: Bacteria present in cave often survive by modifying their metabolic pathway or other mechanism. Understanding these adopted bacteria and their survival strategy inside the cave is an important aspect of microbial ecology. Present study focuses on the bacterial community and geochemistry in five caves of Mizoram, Northeast India. The objective of this study was to explore the taxonomic composition and presumed functional diversity of cave sediment metagenomes using paired end Illumina sequencing using V3 region of 16S rRNA gene and bioinformatics pipeline. Results: Actinobacteria, Proteobacteria, Verrucomicrobia and Acidobacteria were the major phyla in all the five cave sediment samples. Among the five caves the highest diversity is found in Lamsialpuk with a Shannon index 12.5 and the lowest in Bukpuk (Shannon index 8.22). In addition, imputed metagenomic approach was used to predict the functional role of microbial community in biogeochemical cycling in the cave environments. Functional module showed high representation of genes involved in Amino Acid Metabolism in (20.9%) and Carbohydrate Metabolism (20.4%) in the KEGG pathways. Genes responsible for carbon degradation, carbon fixation, methane metabolism, nitrification, nitrate reduction and ammonia assimilation were also predicted in the present study. Conclusion: The cave sediments of the biodiversity hotspot region possessing a oligotrophic environment harbours high phylogenetic diversity dominated by Actinobacteria and Proteobacteria. Among the geochemical factors, ferric oxide was correlated with increased microbial diversity. In-silico analysis detected genes involved in carbon, nitrogen, methane metabolism and complex metabolic pathways responsible for the survival of the bacterial community in nutrient limited cave environments. Present study with Paired end Illumina sequencing along with bioinformatics analysis revealed the essential ecological role of the cave bacterial communities. These results will be useful in documenting the biospeleology of this region and systematic understanding of bacterial communities in natural sediment environments as well.



Publication Date



Open Access, Gold, Green

This document is currently not available here.