Impact of genetic variations and transcriptional alterations of HLA class I genes on cervical cancer pathogenesis

Article Type

Research Article

Publication Title

International Journal of Cancer


In a novel attempt to understand the variations in DNA sequences underlying HLA class I alleles associated with HPV16-related CaCx, we determined the alleles by reconstructing SNP-based haplotypes from resequencing of the most polymorphic exons 2 and 3 of HLA-A, HLA-B and HLA-C. We also determined the impact of SNPs and transcriptional alterations of the genes on CaCx. A high density of SNPs was identified from resequencing. HLA expression was determined by real-time PCR. We identified that even a single associated HLA allele had many underlying SNP-based haplotypes. Out of the most frequent (≥5%) HLA class I alleles, HLA-B*40:06 and HLA-B*15:02 respectively imparted significant risk towards and protection from CaCx as well as HPV16 infection. Employing median-joining networks to detect clusters of sequence-variations for specific HLA alleles, we found the protective SNP-based signature, GAATTTA, in all SNP-based haplotypes of HLA-B*15:02 allele. The signature was derived from seven SNPs within HLA-B which were newly associated with the disease. Contrarily, similarly derived risk-signature, TTGCGCC, mapped only to 52% of SNP-based haplotypes of HLA-B*40:06 allele. This indicated that all SNP-based haplotypes underlying a particular associated HLA allele might or might not have a single signature of risk/protection. HLA-A, HLA-B and HLA-C expressions were downregulated among CaCx cases compared to asymptomatic infections and HPV-negative controls. HLA-A and HLA-B were repressed in both cases harbouring episomal and integrated HPV16, whereas HLA-C in only the latter. Novel genetic variations and differential downregulation-patterns of HLA class I have a significant bearing on HPV16-related CaCx pathogenesis.

First Page


Last Page




Publication Date



Open Access, Bronze

This document is currently not available here.