Metabolic pathway engineering: Perspectives and applications

Article Type

Research Article

Publication Title

Computer Methods and Programs in Biomedicine


Background: Metabolic engineering aims at contriving microbes as biocatalysts for enhanced and cost-effective production of countless secondary metabolites. These secondary metabolites can be treated as the resources of industrial chemicals, pharmaceuticals and fuels. Plants are also crucial targets for metabolic engineers to produce necessary secondary metabolites. Metabolic engineering of both microorganism and plants also contributes towards drug discovery. In order to implement advanced metabolic engineering techniques efficiently, metabolic engineers should have detailed knowledge about cell physiology and metabolism. Principle behind methodologies: Genome-scale mathematical models of integrated metabolic, signal transduction, gene regulatory and protein-protein interaction networks along with experimental validation can provide such knowledge in this context. Incorporation of omics data into these models is crucial in the case of drug discovery. Inverse metabolic engineering and metabolic control analysis (MCA) can help in developing such models. Artificial intelligence methodology can also be applied for efficient and accurate metabolic engineering. Conclusion: In this review, we discuss, at the beginning, the perspectives of metabolic engineering and its application on microorganism and plant leading to drug discovery. At the end, we elaborate why inverse metabolic engineering and MCA are closely related to modern metabolic engineering. In addition, some crucial steps ensuring efficient and optimal metabolic engineering strategies have been discussed. Moreover, we explore the use of genomics data for the activation of silent metabolic clusters and how it can be integrated with metabolic engineering. Finally, we exhibit a few applications of artificial intelligence to metabolic engineering.



Publication Date


This document is currently not available here.