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Bed particle saltation in turbulent wall-shear flow
remains an intriguing phenomenon in applied hydro-
dynamics. In this review, we report the current state
of the art of bed particle saltation in turbulent wall-
shear flow, highlighting the physical characteristics of
bed particle saltation and its mathematical modelling.
A critical appraisal of the mechanics of bed particle
saltation is presented thorough ample experimental
evidence. The salient features of bed particle saltation,
encompassing the saltation height, saltation length,
particle velocity, saltation duration, particle collision
with the bed, particle rotation, particle resting
time and particle re-entrainment, are thoroughly
discussed. Both the deterministic and computational
fluid dynamics approaches in modelling bed particle
saltation are summarized, and the subtle role of the
hydrodynamic forces is elaborated. The estimation of
bedload flux in a fluvial environment, emanating from
the mathematical modelling of bed particle saltation,
is delineated using different modelling approaches.
Finally, the challenges in modelling bed particle
saltation are highlighted, and a new look at bed
particle saltation is furnished.

1. Introduction
In classical geomorphology and applied hydrodynamics,
the term saltation, consonant with its etymological
meaning, refers to the intermittent leaping of bed

2019 The Author(s) Published by the Royal Society. All rights reserved.
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Figure 1. Bed particle saltation with representative particle size d, saltation height hs and saltation length ls. The reference
level is located at a distance ξd below the summitof bed particles. Here, FD is the hydrodynamic drag, FL is the hydrodynamic
lift, FG is the submerged weight of the particle and vr is the particle velocity relative to the fluid flow. The initial position of
the saltating particle lying on the closely packed bed particles is at a distance ζ d above the reference level and (ẋ0, ż0) are the
initial particle velocity components at the beginning of particle motion. In addition, Vpi[= (Vix , Viz)] and Vpt[= (Vtx , Vtz)] are
the particle incidence and take-off velocities at collision, and ai and at are the particle incidence and take-off angles at collision,
respectively. (Online version in colour.)

particles by the action of a flowing fluid. Bed particle saltation is one of the fascinating
manifestations of turbulent wall-shear flow over a loose granular bed. It plays a subtle role
in governing the morphological print of terrestrial topography by transporting and depositing
bed particles. It appears ubiquitously in a wide variety of fluvial and aeolian environments;
for instance, in rivers, deserts and many others [1–9]. In addition, the existence of bed particle
saltation has been evidenced on other planetary topographies [10–12].

In a turbulent wall-shear flow over a loose granular bed, when the applied bed shear stress τ0
slightly exceeds its threshold value τ0c, called the threshold bed shear stress for the initiation of bed
particle motion, the particles roll and/or slide in contact with the bed (figure 1). As the applied
bed shear stress increases further owing to an increase in flow velocity, the particles move along
the bed, performing a series of brief jumps of approximately identical steps, called saltation [13].
Bed particle saltation is limited to a thin bedload layer, within which the particles are collectively
transported in rolling, sliding and saltating modes, called bedload transport. Beyond the bedload
layer, known as the suspension zone (figure 1), the particles are primarily transported in suspension
mode, the physical mechanism of which has been reviewed elsewhere [14,15]. In this review, we
shed light specifically on bed particle saltation, which remains a predominating contributor to
bedload transport. Bed particle saltation is principally governed by hydrodynamic drag FD and
lift FL forces (figure 1). When a bed particle is lifted off the bed by a hydrodynamic force to a
certain height, it begins to descend and finally returns to the bed under the action of gravity. In
figure 1, hs denotes the saltation height, representing the distance from the particle centroid at the
pinnacle of the particle trajectory to a reference level (z = 0). The reference level is considered
to be a distance of ξd below the summit of the bed particles, where d is the median particle
size. In addition, ls represents the saltation length, which is the distance between the initial and
final positions of the particle centroid during a saltation step. The initial position of the saltating
particle resting on bed particles is considered to be z = ζd. The subsequent step of bed particle
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Figure 2. Particle entrainment probability PR versus transport stage function T∗ in rolling mode. (Online version in colour.)

saltation, as illustrated in figure 1, may begin as a result of particle impact against the bed and
hydrodynamic lift.

Over recent decades, momentous advances in the mechanics of bed particle saltation have been
primarily made through experimental observations [2,3,7,8,16–45]. In addition, several analytical
and numerical studies have been carried out to model bed particle saltation [46–62]. Before
going into the details of the salient features of bed particle saltation, it is rather interesting to
throw some light on the threshold of bed particle saltation. Recent studies have shown that bed
particle entrainment into the flow largely depends on the stochastic features of the near-bed
flow, being highly sporadic in nature over a wide spectrum of spatio-temporal scales [63–66].
In the near-bed flow zone, there remain two dominant modes of particle entrainment, such
as the rolling mode and saltation mode. These entrainment modes can be distinguished by
introducing the transport stage function, which represents the excess bed shear stress (= τ0 − τ0c)
in non-dimensional form. The transport stage function T∗ is expressed as T∗ = (τ0 − τ0c)/τ0c =
(Θ − Θc)/Θc, where Θ is the Shields mobility parameter [= u2∗/(�gd)], u∗ is the shear velocity
[= (τ0/ρf )1/2], ρf is the mass density of fluid, � is the submerged relative density of particles
[= (ρp − ρf )/ρf ], ρp is the mass density of particles, g is the gravitational acceleration, Θc is
the threshold Shields mobility parameter [= u2∗c/(�gd)] and u∗c is the threshold shear velocity.
The threshold Shields mobility parameter Θc is dependent on the particle parameter D∗[=
d(�g/ν2)1/3], where ν is the coefficient of kinematic viscosity of fluid. Figure 2 depicts the particle
entrainment probability PR in rolling mode as a function of transport stage function T∗. The
experimental data of Hu & Hui [26], Ancey et al. [33] and Auel et al. [44] clearly indicate a
decreasing trend of PR with T∗. This suggests that, for a large transport stage function, the bed
particles primarily entrain into the flow in a saltating mode. Note that Ancey et al. [33] reported
the experimental data for both the particle entrainment probabilities, PR and PL, in rolling and
saltating modes, respectively. In figure 2, the experimental data of PL, given by Ancey et al. [33],
are transformed to PR by setting PR = 1 − PL. The regression line of the experimental data of Hu
& Hui [26] and Auel et al. [44], given by PR = 1.84T−0.94∗ [44], discriminates between the rolling
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and saltation modes of particle entrainment. It therefore provides a quantitative understanding
of the threshold of bed particle saltation. Auel et al. [44] particularly observed that, owing to the
effects of particle shape, the entrainment probability of a coarse natural particle in saltating mode
is larger than that of a glass sphere.

In addition to the time-averaged hydrodynamic drag FD and lift FL forces, bed particle
saltation can begin as a result of large impulses of near-bed velocity fluctuations during the
bursting events or of the effects of instantaneous hydrodynamic lift in close proximity to the
bed. In addition, the hydrodynamic pressure gradient and skin friction are sources of momentum
for the particles [13]. To be specific, in the rising phase of the particle trajectory, the submerged
weight FG of the particle and the vertical component of the hydrodynamic drag FD are directed
downwards (figure 1); in the recession phase, the vertical component of the hydrodynamic drag
FD being directed upwards opposes the submerged weight FG of the particle. On the other hand,
the hydrodynamic lift acting on a saltating particle is always directed upwards (normal to the
particle trajectory), because the velocity of the saltating particle at a given location (elevation) is
less than the flow velocity.

Experimental observations have revealed that some particles move in the form of a series
of saltations [7,8,30]. This suggests that, after the particles return to the bed after performing
a single saltation, they re-perform the subsequent saltation without any pause at the bed. The
hydrodynamic lift remains the motivating force to lift up the particles from the bed. However,
the effects of bed impact can no longer be neglected [28]. When a saltating particle collides with
the bed particles, it may either rebound off the bed particles or impact against them. During
the impact of the saltating particle with the bed particles, most of the particle momentum is
transferred to the bed particles in a succession of horizontal impulses. This may cause a rolling
motion of the surface particles in the form of surface creep [67].

Despite considerable progress in grasping the underlying mechanism of bed particle saltation
both experimentally and theoretically, no review has so far been compiled in understanding the
advances in the mechanics of bed particle saltation. This paper is dedicated to the current state of
the art of bed particle saltation in turbulent wall-shear flow. It is arranged as follows. In §2, the
mechanics of bed particle saltation is presented, including the saltation height, saltation length,
particle velocity, saltation duration, particle collision with the bed, particle rotation, particle
resting time and particle re-entrainment. The mathematical modelling of bed particle saltation
is summarized in §3. Finally, the modelling challenges of bed particle saltation are furnished in
§4, providing a new look on the bed particle saltation as a future research scope.

2. Mechanics of bed particle saltation

(a) Saltation height and saltation length
Figure 3a illustrates the relative saltation height hs/d as a function of transport stage function
T∗, obtained from previous experimental data [8,20,22–24,26,28,33,41,42,44]. On the other hand,
figure 3b furnishes the experimental data of relative saltation length ls/d as a function of
transport stage function T∗ [8,20,23,24,26,28,33,41,42,44]. In the insets of figure 3a,b, the schematic
illustrations of bed particle saltation, highlighting the saltation height, saltation length and the
reference level corresponding to the experimental data, are presented for better explanation of
the phenomenon. Here, the reference level is located tangential to the summit of bed particles
(ξ = 0). In general, the experimental data trends show that both the relative saltation height hs/d
and the relative saltation length ls/d increase, as the transport stage function T∗ increases. It is
discernible that, for a given transport stage function T∗, the relative saltation height hs/d and
relative saltation length ls/d vary over a wide range owing to the effects of particle size d and
streamwise bed slope S0. Auel et al. [44] reported that, for a given transport stage function T∗ = 6,
the relative saltation heights hs/d for a mild bed slope (S0 = 0.01) are approximately 1.12 times
larger than those for a steep slope (S0 = 0.04), whereas, for T∗ = 115, the above differences reduce
nearly to 5%. In addition, for a given transport stage function T∗, the relative saltation lengths ls/d
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Figure 3. (a) Relative saltation height hs/d versus transport stage function T∗ and (b) relative saltation length ls/d versus
transport stage function T∗. (Online version in colour.)

for a mild bed slope (S0 = 0.01) are 1.09 times larger than those for a steep slope (S0 = 0.04). Auel
et al. [44] also reported that the effects of particle shape on relative saltation height hs/d could be
prominent for coarser particles subject to a small value of T∗.

It is worth mentioning that several empirical relationships of relative saltation height hs/d
and relative saltation length ls/d were proposed in the literature; for instance, hs/d = 14.3(Θ −
Θc)0.575 [24]; hs/d = 1.78(� + 1)0.86Θ0.69 [26]; hs/d = 0.025T∗ + 0.6 [44]; hs/d = 0.3D0.7∗ T0.5∗ [47];
hs/d = 1.44T0.5∗ [68] and ls/d = 16 [18]; ls/d = 3000(u∗/ws)1.5(u∗ − u∗c)/u∗ [22], where ws is the
terminal fall velocity of particles; ls/d = 2.3(T∗ + 1) [23]; ls/d = 196.3(Θ − Θc)0.788 [24]; ls/d =
27.5(� + 1)0.94Θ0.9 [26]; ls/d = 70(u∗ − u∗c)/ws [40]; ls/d = 1.17T∗ [44]; ls/d = 3D0.6∗ T0.9∗ [47]; ls/d =
8T0.88∗ [68]. Note that, using all the experimental data plotted in figure 3, Auel et al. [44] reported
that hs/d = 0.7T0.3∗ and ls/d = 2.3T0.8∗ . However, the empirical relationships proposed by Auel et al.
[44] do not explicitly address the effects of particle parameter D∗ on the relative saltation height
hs/d and relative saltation length ls/d.

(b) Particle velocity
The mean particle velocity Vp in non-dimensional form can be expressed as Fd = Vp/(�gd)1/2,
where Fd is the particle densimetric Froude number. Figure 4 shows the experimental data of the
particle densimetric Froude number Fd as a function of transport stage function T∗ [8,16,18,22–
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Figure 4. Particle densimetric Froude numberFd versus transport stage function T∗. (Online version in colour.)

24,26,34,37,40,42,44]. The experimental data display an increasing trend of particle densimetric
Froude number Fd with transport stage function T∗. To be specific, the experimental data of
Lajeunesse et al. [40] and Chatanantavet et al. [42] show considerable departure from the mean
data trend. In fact, the experimental data of Lajeunesse et al. [40] predict lower values of particle
densimetric Froude number than the mean data trend owing to the mobile bed conditions,
where the particle transport can take place intermittently in both rolling and saltating modes.
Conversely, the experimental data of Chatanantavet et al. [42] depict higher values of particle
densimetric Froude number than the mean data trend, because the threshold Shields mobility
parameter Θc in their experiments was considered to be a constant of Θc = 0.007. However,
this departure can be further reduced by modifying the threshold Shields mobility parameter
Θc [44]. It is also evident that, for a given transport stage function T∗, the experimental data of
particle densimetric Froude number Fd do not vary over a considerable range, excluding those
of Lajeunesse et al. [40] and Chatanantavet et al. [42]. This reveals that, for a given transport stage
function T∗, the effects of particle parameter D∗ on particle densimetric Froude number Fd are not
substantial. A similar conclusion is apparent from the empirical formulae of Auel et al. [44], van
Rijn [47] and Sklar & Dietrich [68]. For the relationships of Fd as a function of T∗, Auel et al. [44]
reported Fd = 1.46T0.5∗ , van Rijn [47] suggested Fd = 1.5T0.6∗ , while Sklar & Dietrich [68] proposed
Fd = 1.56T0.56∗ . In addition, several empirical formulae of mean particle velocity Vp were reported
as Vp = c0(u∗ − u∗c) with c0 = 13.4–14.3 [8], Vp = 11.5(u∗ − 0.7u∗c) [18], Vp = 8(u2∗ − u2∗c)0.5 [22],
Vp = c1(u∗ − u∗c) with c1 = 6.8–8.5 [23], Vp = 11.53u∗(Θ − Θc)0.174 [24], Vp = 11.9(u∗ − 0.44u∗c) [26]
and Vp = u∗[10 − 0.7(Θc/Θ)1/2] [69].

(c) Saltation duration
It is interesting to shed light on how the bed particle saltation is affected by the relative
submergence, which is defined as the ratio of flow depth h to particle size d. Amir et al.
[70] particularly studied the effects of relative submergence on mean saltation duration ts.
Figure 5 shows the non-dimensional mean saltation duration Ts(= tsu∗/d) as a function of
relative submergence h/d, obtained from the experimental data of researchers [23,24,26,28,70]. In
general, the experimental data of non-dimensional mean saltation duration Ts appear to follow
an increasing trend with the relative submergence h/d, because finer saltating particles remain for
a longer duration in the fluid domain. The experimental data also indicate a clear dependency of
non-dimensional mean saltation duration Ts on particle parameter D∗.
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(d) Particle collision with the bed
Particle collision with the bed remains a key feature of bed particle saltation, because the particles
colliding with the bed transfer their streamwise momentum component to the normal direction to
sustain the particle saltation. The characteristic parameters at collision are the particle incidence
and take-off angles, ai and at, and the particle incidence and take-off velocities, Vpi and Vpt,
respectively (figure 1). Figure 6a shows the particle take-off angle at as a function of particle
incidence angle ai at collision, obtained from the experimental data of Niño et al. [23], Niño &
García [28], Lee et al. [29,31] and Auel et al. [45]. From the solid line at = ai, it turns out that, in
general, the particle take-off angle at collision is larger than the particle incidence angle. This
observation is largely supported by the experimental data of Niño et al. [23], Lee et al. [29,31]
and Auel et al. [45]. Specifically, Auel et al. [45], who used particles of sizes in the range 5.3–
18.5 mm, reported that, irrespective of particle size and particle mass density, the particle take-off
angle at collision always remains larger than the particle incidence angle. However, with regard
to the experimental data of Niño & García [28], who used sand particles of size 0.5 mm, the large
data scatter is principally attributed to the effects of finer particle size over a wide range of flow
Reynolds number. On the other hand, figure 6b shows the particle take-off angle at as a function of
transport stage function T∗ at collision. It is quite obvious that the particle take-off angle reduces,
as the transport stage function grows, suggesting a flatter particle trajectory with an increase in
transport stage function.
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The role of particle incidence and take-off velocities on bed particle saltation can be identified
by introducing the streamwise and normal restitution coefficients, denoted as ex and ez,
respectively. The ex and ez are expressed as

ex = Vtx

Vix
and ez =

∣∣∣∣Vtz

Viz

∣∣∣∣ , (2.1)

where Vtx and Vix are the streamwise components of particle take-off and incidence velocities
at collision, respectively, and Vtz and Viz are the normal components of particle take-off and
incidence velocities at collision, respectively (figure 1).

It is pertinent to mention that the bed particle saltation after a collision with the bed depends
on the particle Stokes number, which provides a quantitative understanding of the ratio of particle
inertia to the viscous pressure force experienced by the particle [45]. The particle Stokes number
S is expressed as

S = 2mpVpi

3πρf νd2 , (2.2)

where mp is the particle mass [= (πd3/6)ρp]. The normal component of the particle Stokes number
(henceforth called the normal Stokes number for brevity) is therefore expressed as

Sz = S sin ai = (� + 1)Vizd
9ν

. (2.3)

Figure 7a illustrates the streamwise restitution coefficient ex as a function of transport stage
function T∗, obtained from the experimental data of Niño et al. [23], Hu & Hui [26], Niño & García
[28], Lee et al. [31] and Auel et al. [45]. On the other hand, figure 7b shows the experimental data
of streamwise restitution coefficient ex as a function of normal Stokes number Sz [35,45]. From
figure 7a, it appears that the streamwise restitution coefficient ex varies approximately within
0.65–1, revealing that the streamwise component of particle incidence velocity lessens after the
collision. However, the variation in the mean data trend of streamwise restitution coefficient ex
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Figure 8. Dynamic friction coefficient fc versus transport stage function T∗. (Online version in colour.)

with transport stage function T∗ is trivial. By contrast, figure 7b shows a slight increasing trend of
streamwise restitution coefficient ex with normal Stokes number Sz. It is evident that the ex values
are mostly below unity except at high Stokes numbers Sz (Sz ≈ 500–800), implying that the drifting
force applied to the particle by the fluid is to reduce the streamwise component of particle velocity
except for Sz ≈ 500–800. Figure 7c illustrates the normal restitution coefficient ez as a function of
transport stage function T∗ [23,26,28,31,45]. In addition, figure 7d depicts the normal restitution
coefficient ez as a function of normal Stokes number Sz [32,35,36,45]. For a given transport stage
function T∗, the normal restitution coefficient ez varies over a significant range (figure 7c). The
experimental data corresponding to ez > 1 suggest that the normal component of particle take-off
velocity is larger than the particle incidence velocity, confirming a sizable amount of momentum
transfer in the normal direction to continue the next saltation step [26,45]. The normal restitution
coefficient exceeding unity can be explained from the perspective of the near-bed coherent
structures, which cause the particles to lift off the bed when high-momentum fluid sweeps down
[45]. However, the mean data trend of normal restitution coefficient ez varies insignificantly with
the transport stage function T∗, except for a few experimental data plots [23,28,31]. On the other
hand, figure 7d suggests an increasing trend of normal restitution coefficient ez with normal
Stokes number Sz. It is worth noting that the normal restitution coefficients ez, corresponding
to the experimental data of Schmeeckle et al. [32], Kantak & Davis [35] and Joseph & Hunt [36]
are less than unity, because these data were acquired in quiescent flow conditions. However, the
experimental data of Auel et al. [45] in the range Sz = 95–1160 (or S = 1240–26 600) show that ez > 1.
Note that the above range essentially crosses the threshold value of partial viscous damping, for
example S = 105 [32] and Sz ≈ 100 [36].

It is also important to find the difference between the streamwise components of particle
incidence and take-off velocities. To achieve this aim, the dynamic friction coefficient fc is often
introduced. fc is expressed as

fc = (� + 1)Vix(Vix − Vtx)
�gls

. (2.4)

Figure 8 shows the dynamic friction coefficient fc as a function of transport stage function T∗,
obtained from the experimental data reported in the literature [8,23,26,45]. The experimental data
suggest that the friction coefficient fc varies over a considerable range. The friction coefficient fc
is, in general, positive owing to the fact that ex < 1, revealing that only a negligible amount of
energy is transferred to the bed. However, a few experimental data of Auel et al. [45] contradict
this traditional conclusion, showing negative values of the friction coefficient (figure 8).
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Figure 9. Particle take-off rotational function G versus transport stage function T∗. (Online version in colour.)

(e) Particle rotation
Particle rotation is principally controlled by the particle’s collisions with the bed. The particle
take-off angular velocity at collision is slightly larger than the particle incidence angular velocity
and, subsequently, it diminishes during the next saltation step owing to the viscous effects [28].
In essence, the particle shape plays a subtle role in governing the particle angular velocity,
because an elongated particle after a collision with the bed produces larger particle angular
velocity than a spherical particle. The rotational motion of saltating particles was specifically
studied by some researchers [25,28]. The particle rotation can be quantified by introducing the
particle take-off rotational function G, which can be expressed as G = ωt[d/(�g)]1/2. Here, ωt is
the particle take-off angular velocity. Figure 9 shows the particle take-off rotational function G as
a function of transport stage function T∗, reanalysing the experimental data of Lee & Hsu [25].
The experimental data are categorized in different classes of particle parameter D∗ and relative
particle size dr, which is the ratio of saltating particle size to bed particle size. For a given particle
parameter D∗ and relative particle size dr, the particle take-off rotational function G essentially
increases with an increase in transport stage function T∗. This shows that the particle rotates
more quickly with an increase in excess bed shear stress. Lee & Hsu [25] found that, for a given
transport stage function T∗, particles with larger sizes and submerged relative densities rotate
more quickly. The reason for this is ascribed to the fact that the coarse particles create intense
reactive forces at collision, giving rise to rapid particle rotation. Lee & Hsu [25] also reported
that a saltating particle with a relative particle size of less than unity rotates at a slower rate
than that for a relative particle size equalling unity. By contrast, Niño & García [28] expressed the
mean particle angular velocity Ωm in non-dimensional form as Ω̂m(= Ωmd/u∗) = 3.98 − 1.13T∗,
implying that Ωm decreases as T∗ increases. It is contradictory to the finding of Lee & Hsu [25].

(f) Particle resting time and particle re-entrainment
The particle resting time can be defined as the time elapsed between the instant when a
saltating particle comes to the bed and the instant when it continues motion. Niño & García
[28] found a resting time in the range 0.3–0.7 s for sand particles of size 0.5 mm. Regaining
particle motion is caused by turbulent bursting and particle–particle interactions. Experimental
observations revealed the fact that, during particle transport, the ejection and sweep events
remain the motivating factor towards bed particle entrainment [21,71]. In fact, the particle resting
time decreases as the transport stage function increases, because the frequency of sweep events
enhances with an increase in shear velocity. However, as the transport stage function increases
further, the number of particles in motion per unit area and time also increases. Therefore, the
resting time decreases owing to an increase in the number of re-entrainment events resulting
from particle–particle interactions.
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3. Modelling of bed particle saltation

(a) Deterministic approach
In the deterministic approach, the time-averaged fluid forces acting on a saltating particle are
analysed. The saltating particle trajectory can be readily obtained by solving the equations of
motion. The physical system is shown in figure 1, where the streambed is nearly horizontal.
However, for a streambed making an inclination θ with the horizontal, the equations of motion
in the xz-plane are expressed as

maẍ − FL
ż
vr

− FD
ū − ẋ

vr
− FG sin θ − FBx = 0 (3.1)

and

maz̈ − FL
ū − ẋ

vr
+ FD

ż
vr

+ FG cos θ + FBz = 0, (3.2)

where ma is the total particle mass including the added fluid mass, (ẍ, z̈) are the streamwise and
normal components of particle acceleration, vr is the particle velocity relative to the fluid flow, ū
is the time-averaged streamwise flow velocity, (ẋ, ż) are the streamwise and normal components
of particle velocity and (FBx, FBz) are the streamwise and normal components of the Basset force.

As an accelerating or decelerating particle moves in a fluid, the particle moves a certain volume
of neighbouring fluid, because both the particle and fluid cannot simultaneously occupy the same
space. To simplify the problem, a certain volume of fluid is considered to be in motion with
the particle. Therefore, the concept of added fluid mass is inevitable in modelling bed particle
saltation. The total particle mass ma is thus expressed as

ma = 1
6 (ρp + αmρf )πd3, (3.3)

where αm is the added mass coefficient. In general, the added mass of a spherical particle in
a potential flow can be obtained as half of the fluid mass displaced by the particle. Therefore,
αm = 0.5 is often considered. However, the added mass coefficient in a real fluid flow differs from
the idealized situation owing to the flow separation from the particle.

The hydrodynamic drag FD acting on a particle, resulting from the pressure and the viscous
skin friction effects, is expressed as

FD = 1
8 CDρf v

2
r πd2, (3.4)

where CD is the drag coefficient. Several empirical relationships for the drag coefficient have been
proposed in the literature [13]. Specifically, van Rijn [47] used Morsi & Alexander’s [72] formula,
while Niño & García [49,50] used Yen’s [73] formula.

On the other hand, the hydrodynamic lift on a particle can be induced in two ways. Lift due
to a steep velocity gradient in the wall-shear layer is called the Saffman lift FLS and lift due to a
spinning motion of the particle is called the Magnus lift FLM. The Saffman lift FLS and the Magnus
lift FLM are expressed as follows [47]:

FLS = CLρf ν
1/2vrd2

(
∂ū
∂z

)1/2
and FLM = CLρf vrd3Ω , (3.5)

where CL is the lift coefficient and Ω is the particle angular velocity. No consensus has so far been
achieved regarding the lift coefficient CL and, therefore, it can vary over a wide range [13].

The Basset force FB takes into account the effects of temporal delay in the growth of the
boundary layer adjoining the particle surface owing to the change in the relative velocity. The
FB is expressed as

FB = (FBx, FBz) = 3
2
π1/2ρf ν

1/2d2
∫ t

0

dvr

dσ

dσ

(t − σ )1/2 , (3.6)

where vr is the particle relative velocity vector, σ is the dummy variable and t is the time.
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Figure 10. (a) Relative saltation height hs/d versus transport stage function T∗ [47], (b) relative saltation length ls/d versus
transport stage function T∗ [47] and (c) particle densimetric Froude numberFd versus transport stage function T∗ [47]. (Online
version in colour.)

The submerged weight FG of the particle is expressed as FG = (πd3/6)�ρf g. Further, the
streamwise flow velocity ū within the wall-shear layer obeys the classical logarithmic law. The
logarithmic law is expressed as

ū = u∗
κ

ln
z
z0

, (3.7)

where z0 is the zero-velocity level. The zero-velocity level z0 typically depends on the flow
regimes, which are distinguished by the values of the shear Reynolds number R∗(= u∗ks/ν). Here,
ks is the Nikuradse equivalent sand roughness. For a smooth flow regime (R∗ ≤ 5), z0 = 0.11ν/u∗;
for a transitional flow regime (5 < R∗ < 70), z0 = 0.11ν/u∗ + ks/30; whereas for a rough flow
regime (R∗ ≥ 70), z0 = ks/30 [13].

It is worth noting that equation (3.6) is an integro-differential equation owing to the presence
of the Basset force term. However, the complexity inherited by the Basset force term can be
reduced following the procedure of Brush et al. [74]. This can transform the integro-differential
equation into an ordinary differential equation. Therefore, differential equations (3.1) and (3.2)
can be readily solved for a set of given parameters. Furthermore, the boundary conditions play
a significant role in governing the particle trajectory. To be specific, van Rijn [47] considered the
reference level to be positioned at a distance of 0.25d below the summit of bed particles (ξ = 0.25).
He further considered the initial position of the saltating particle, lying on the closely packed
bed particles, to be at a distance of 0.6d above the reference level (ζ = 0.6). In addition, the initial
particle velocity components were taken as ẋ0 = ż0 = 2u∗ [47].

Figure 10 shows the salient model results of bed particle saltation, as reported by van Rijn
[47]. In figure 10a, the curves of relative saltation height hs/d as a function of transport stage
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Figure 11. Comparison of the particle trajectories, obtained from the numerical simulation, with the experimental data for
(a) d = 0.56 mm (sand), u∗ = 0.025 ms−1 and (b) d = 30 mm (gravel), u∗ = 0.22 ms−1. (Online version in colour.)

function T∗ for different particle parameters D∗ (= 2.5, 7.6, 12.6, 25.3, 37.9 and 50.6) are shown.
This reveals that, for a given transport stage function T∗, the relative saltation height increases
with an increase in particle size. Figure 10b furnishes the curves of relative saltation length ls/d
as a function of transport stage function T∗ for the same set of particle parameters D∗. Similar to
relative saltation height, the relative saltation length for a given transport stage function increases
with an increase in particle size. On the other hand, figure 10c depicts the curves of particle
densimetric Froude number Fd as a function of transport stage function T∗ for different particle
parameters D∗. It is apparent that, for a given transport stage function T∗ smaller than unity, the
particle densimetric Froude number Fd insignificantly varies with the particle parameter D∗. The
enlarged frame bounded by T∗ ∈ [2, 3] and Fd ∈ [6, 8] clearly shows the dependency of the particle
parameter D∗ on the particle densimetric Froude number Fd.

It is worth emphasizing that, with regard to the sediment transport studies, the consideration
of the Basset force in the equations of motion was generally overlooked [24,47,75]. However, it
was revealed that the Basset force plays an important role for finer particles [50,61]. To be specific,
the Basset force plays an effective role in the case of sand saltation rather than gravel saltation.
For the sand saltation, Moreno-Casas & Bombardelli [61] reported that, when the Basset force is
ignored in the numerical simulation, the saltation length and the saltation height, obtained from
the analysis, underestimate the experimental data by 40% and 15%, respectively.

Figure 11a,b illustrates the comparison of the particle saltation trajectories, obtained from the
numerical simulation, with the experimental data for sand and gravel, respectively. For various
combinations of hydrodynamic forces, the model results anticipate the utmost importance of the
hydrodynamic lift and the Basset force. It is also apparent that, for sand saltation (figure 11a), the
Basset force must be taken into account to accurately predict the particle saltation trajectory.
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(b) Computational fluid dynamics approach
The major drawback of the theoretical models based on the deterministic approach is that they
are unable to address the fluctuations in particle trajectories induced by the near-bed coherent
structures. In addition, the deterministic approach of bed particle saltation cannot anticipate
the subtle effects of bed packing conditions on the saltation characteristics. With the advent of
high-resolution computational fluid dynamics schemes, impressive strides have been made in
understanding the interaction between the particle motion and the near-bed coherent structures
[76,77]. Such an interaction gives rise to the formation of various sediment patterns that could
be predicted through numerical simulations [78,79]. For turbulent flow over a regular array
of fixed spherical particles, Chan-Braun et al. [80] applied direct numerical simulation (DNS)
in conjunction with the immersed boundary method (IBM) for the turbulent flow and the
fluid–particle interaction, respectively. They particularly examined the hydrodynamic forces and
torques on the bed particles. Some studies applied the artificial repulsion potential to determine
the particle–particle collisions and the subsequent contact forces, neglecting the tangential friction
[76,81]. This assumption could affect the particle rotation and in turn the Magnus lift. Ji et al. [77]
specifically investigated particle entrainment by the turbulent flow, combining DNS, the IBM and
the finite-discrete element method (FDEM), which could effectively model the particle motion and
particle–particle collisions. The numerical results revealed a close association of the continuous
particle saltation with the sweep events. In addition, they showed that the pressure gradients
rather than the shear stresses play a decisive role in governing the particle dynamics.

In another attempt, Ji et al. [57] studied bed particle saltation in a rough bed comprising closely
packed spherical particles, coupling DNS, the IBM and the FDEM. The numerical simulation
revealed that, in the near-bed flow zone, the entrained particles substantially modify the profiles
of flow velocity and turbulent stresses. In essence, the quasi-streamwise oriented fluid streaks
do not originate in the vicinity of the bed. However, far from the bed, the coherent structures
are retrieved owing to the trivial effects of bed roughness and particle–particle collisions
in the outer flow zone. The continuous bed particle saltation obtained from the numerical
simulation evidenced the collision-rebounding mechanism. The link between the quick changes
in particle streamwise and normal velocity components uncovered the fact that the transfer
of the particle streamwise momentum component to the normal direction is guided by the
particle’s collision with the bed. This mechanism is quite different from that of bed particle
entrainment, where the particle normal momentum component is received from the coherent
structures. Very recently, bed particle saltation was studied by coupling large eddy simulation
(LES) and the discrete element model (DEM) [82,83]. Liu et al. [83] reported that the saltating
particle trajectory is primarily driven by turbulent fluctuations and the particle’s collisions with
the bed. The particle velocity components in the streamwise and normal directions obey a
skewed Gaussian distribution. In addition, the turbulent fluctuations can somewhat enhance the
correlation between the particle incidence and take-off angles.

(c) Determination of bedload flux
Figure 12a shows a schematic illustration of bedload flux in a continuum scale, whereas figure 12b
illustrates the motion of a single particle with a mean saltation length of ls. The bedload flux qb
(in volume per unit time and bed width) can be defined as the product of the mean particle
velocity Vp, the volumetric particle concentration C within the bedload layer and the bedload
layer thickness δb. The δb can be approximately considered as the saltation height hs. Therefore, qb
is expressed as

qb = VpChs. (3.8)

Importantly, using experimental data, van Rijn [47] expressed the volumetric particle
concentration C within the bedload layer as C = 0.18C0T∗/D∗, where C0 is the maximum bedload
concentration, which can be taken as 0.65 [47]. The bedload flux qb in non-dimensional form,
called the bedload flux function, is expressed as Φb = qb/(�gd3). Therefore, using equation (3.8), the
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flow
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Figure 12. Schematic illustration of (a) bedload flux and (b) motion of a single particle with a mean saltation length of ls.
(Online version in colour.)

Φb is expressed as

Φb =FdC
hs

d
. (3.9)

Using several empirical relationships for the particle densimetric Froude number Fd and the
relative saltation height hs/d as mentioned earlier, the bedload flux function can be evaluated
from equation (3.9).

On the other hand, the bedload flux gbs can also be defined in terms of submerged weight per
unit time and bed width. The gbs is expressed as gbs = WbVp [50], where Wb is the submerged
weight per unit bed area. Considering the dynamic friction coefficient fc (see equation (2.4)), the
Wb is expressed as Wb = τ0p/fc, where τ0p is the dispersive particle shear stress. Following the
concept of Bagnold [84], the applied bed shear stress τ0 can be decomposed into the dispersive
particle shear stress τ0p and the interfacial fluid shear stress τ0f , implying τ0 = τ0p + τ0f . Bagnold
[84] argued that, at the equilibrium condition, the interfacial fluid shear stress τ0f equals the
threshold bed shear stress τ0c. This results in τ0p = τ0 − τ0c. Thus, the Wb takes the form Wb =
(τ0 − τ0c)/fc. The bedload flux gbs (in submerged weight per unit time and bed width) is then
expressed as

gbs = τ0 − τ0c

fc
Vp. (3.10)

Therefore, the bedload flux function Φb reads

Φb =Fd
Θ − Θc

fc
. (3.11)

Importantly, equation (3.11) expresses the bedload flux function Φb as a function of the excess
Shields mobility parameter (= Θ − Θc) and the particle densimetric Froude number Fd. Using
equation (2.4) for the dynamic friction coefficient fc and several empirical relationships for the
particle densimetric Froude number Fd, the bedload flux function can be estimated from equation
(3.11).

The bedload flux can also be determined from the entrainment probability of a particle
in saltating mode. The entrainment probability PL in saltating mode is expressed as the
hydrodynamic lift exceeding the submerged weight of the particle, implying PL = PL(FL ≥ FG).
Einstein [4,5] considered that, during bedload transport, the particles move in a series of brief
jumps in succession. The average saltation length was considered to be λs times the particle
diameter (ls = λsd), where λs for spherical particles is 100. However, later Einstein [5] modified
the average saltation length by introducing the entrainment probability in saltating mode. Since
PL denotes the probability of hydrodynamic lift exceeding the submerged weight, this suggests
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that the number of particles that deposit on the bed after performing a saltation length is
N(1 − PL), where N is the number of particles in motion. Therefore, NPL particles remain in
motion. Consequently, NPL(1 − PL) particles deposit on the bed and NP2

L particles continue to
move after travelling the second step. In this way, the process continues until all the particles
deposit on the bed after a given time. Thus, the average saltation length ls (symbol remains the
same for brevity) can be expressed as

ls =
∞∑

N=0

(1 − PL)PN
L (N + 1)λsd = λsd(1 − PL)−1. (3.12)

If gb denotes the bedload flux in dry weight per unit time and bed width and ibs represents
the bedload fraction to be deposited for a given particle size, then the particle deposition rate per
unit time and bed width is gbibs. It follows that the number of particles Nd deposited per unit
time and bed area is Nd = gbibs(1 − PL)/(lxρpgk1d3) = gbibs(1 − PL)/(λsρpgk1d4), where k1 is a factor
accounting for the particle volume.

On the other hand, if ibr represents the bedload fraction to be removed for a given particle
size, then the number of such particles per unit bed area is ibr/(k2d2), where k2 accounts for the
projected area of the particle. Therefore, the number of particles Nr removed per unit time and
bed area is Nr = [ibr/(k2d2)] × (PL/te), where te is the exchange time. Einstein [5] considered the
exchange time te to be proportional to d/ws, where ws follows ws ∝ (�gd)1/2. This suggests te =
k3d/ws, where k3 is a proportionality constant. At an equilibrium condition, the particle deposition
rate is balanced by the particle removal rate. Therefore, equating Nd and Nr results in

Φb∗ = A−1
∗ PL(1 − PL)−1, (3.13)

where Φb∗ = Φb × (ibs/ibr) and A∗ = k2k3/(k1λs).
Einstein [5] considered the lift force fluctuations η(t) to obey the Gaussian distribution and

expressed the lift force fluctuations in non-dimensional form as η∗ = η(t)/η0, where η0 is a constant
(= 0.5). Following the condition: PL = PL(FL ≥ FG), Einstein expressed the entrainment probability
PL in saltating mode as

PL = 1 − 1
π1/2

∫B∗Ψb∗−η−1
0

−B∗Ψb∗−η−1
0

exp(−t2) dt, (3.14)

where B∗ = B/[η0 ln2(10.6)], B = 2k1κ
2/(k2CL), κ is the von Kármán constant (= 0.41), Ψb∗ =

[Ψ ′
bξhY ln2(10.6)]/β2

x , Ψ ′
b is the flow intensity function due to particle roughness [= �d/(R′

bS0)], R′
b

is the hydraulic radius due to particle roughness, ξh is the hiding coefficient, Y is the lift correction
factor, βx = ln(10.6X/�k), X is the characteristic bed particle size (X = 0.77�k for �k/δv ≥ 1.8 and
X = 1.39δv for �k/δv < 1.8), �k is the apparent roughness (= ks/xk), xk is a correction factor and
δv is the viscous sublayer thickness. Einstein [5] considered the lift coefficient CL to be 0.178.
Equation (3.13) provides an estimation of the bedload flux function as a function of entrainment
probability in saltating mode, which can be determined from equation (3.14).

Engelund & Fredsøe [69] expressed the bedload flux gb (in dry weight per unit time and bed
width) as gb = (πd3/6)ρpg(PL/d2)Vp, where the PL was obtained following the concept of Bagnold
[84] as PL = 6(Θ − Θc)/(π fc). They finally obtained the bedload flux function Φb as

Φb = 9.3
fc

(Θ − Θc)(Θ1/2 − 0.7Θ
1/2
c ). (3.15)

In this context, it is worth noting that these researchers obtained the entrainment probability
in saltating mode by analysing the hydrodynamic forces at the particle scale. A detailed
description of the mathematical analyses of bed particle entrainment was reviewed elsewhere
[66]. Importantly, Dey & Ali [65] determined the bedload flux on a continuum scale by extending
the mathematical analysis at the particle scale. Dey & Ali [65] expressed the number of entrained
particles N per unit bed width during a time period dt as N = [4Ab/(πd2)]PLCb, where Ab is
the bed surface area with a unit bed width (= ls × 1). As the saltation length ls increases with
an increase in time-averaged hydrodynamic lift FL and reduces with an increase in submerged
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Figure 13. Bedload flux functionΦb versus flow intensity functionΨb. (Online version in colour.)

weight FG of particle, it follows that ls/d ∝ FL/FG. Using the expressions for FL and FG, Dey &
Ali [65] obtained ls/d = k4CLΘ(u+2 + σ+2

u ), where k4 is a coefficient including the added mass
coefficient, u+ is ū/u∗, σ+

u is σu/u∗, σu is the streamwise turbulence intensity [= (u′u′)1/2] and u′
is the fluctuations of instantaneous streamwise flow velocity from its time-averaged value. The
time period dt for particle removal from the bed was considered to be dt = k5d/u∗, where k5 is
a coefficient. Dey & Ali [65] expressed the bedload flux gb as gb = (N/dt)ρpg(πd3/6) and finally
obtained the bedload flux function Φb as

Φb = K6CbCLPL(u+2 + σ+2
u )Ψ −3/2

b , (3.16)

where k6 is a coefficient that was found to be 4.5 and Ψb is the flow intensity function (= Θ−1).
Figure 13 shows the bedload flux function Φb as a function of flow intensity function Ψb,

obtained from the model of Dey & Ali [65]. In addition, the Φb(Ψb) curve of Einstein [5] and ample
experimental data of researchers [4,85–90] are furnished. Dey & Ali [65] specifically provided the
dependency of the Φb(Ψb) curve on particle size d. The upper and lower limits of the Φb(Ψb)
curves of Dey & Ali [65] correspond to the particle sizes d = 0.8 and 4 mm, respectively. It turns
out that the Dey and Ali upper and lower limiting curves are frozen curves, which do not vary
for d < 0.8 mm and d > 4 mm, respectively, revealing that the dependency of the Φb(Ψb) curve on
particle size d only persists in the domain d ∈ [0.8, 4] mm.

4. Closure
Bed particle saltation in turbulent wall-shear flow, studied over recent decades, has been
thoroughly reviewed in the light of experimental observations, highlighting the relevant features
of the mechanics of particle saltation. In addition, the mathematical modelling of bed particle
saltation has been critically appraised, discussing the roles of the near-bed hydrodynamic
forces and the turbulence. The determination of bedload flux, stemming from the mathematical
modelling of bed particle saltation, has also been elaborated. Despite significant advances in the
experimental observations on bed particle saltation, a unique mathematical model of bed particle
saltation in turbulent wall-shear flow remains in its infancy. The reason for this is attributed to
the lack of construction of a generalized force system that is capable of capturing the essential
elements of the fluid–particle and particle–particle interactions.

One of the major drawbacks of the existing mathematical models of bed particle saltation turns
out to be a strong conjecture stating that the flow field is hardly affected by the particle motion.
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In fact, the fluid flow drives the particle motion and, in turn, the particle motion modifies the
fluid flow [91]. Experimental observations have demonstrated that, for a mobile bed, the velocity
laws in the near-bed flow zone are essentially modified, revealing a departure of the von Kámán
constant from its well-accepted value (= 0.41) in flow over a rigid bed [92]. Therefore, a proper
coupling between the fluid flow and the particle motion needs further thought. In addition, the
identification of hydrodynamic drag and lift forces on a moving particle in the near-bed flow zone
requires attention. This is because of the fact that, in addition to the time-averaged hydrodynamic
drag and lift forces, the effects of velocity fluctuations play a prominent role in sustaining bed
particle saltation. The form-induced drag on a particle, generated by the streamwise advective
acceleration, can no longer be ignored in the theoretical analysis. Further, the turbulent lift force,
resulting from the vertical velocity fluctuations that arise from the vertical advective acceleration,
must be included in the mathematical model. The effects of particle size on bed particle saltation
have been well explored experimentally. However, to model bed particle saltation in a gravel-bed
stream, appropriate constitutive relationships supporting a large corpus of experimental data are
yet to be developed in analysing the force system. Furthermore, in mathematical modelling, the
consideration of the effects of particle–particle collisions away from the bed on the dynamics of
bed particle saltation is far from complete [93]. Among the key features of bed particle saltation,
little attempt has so far been made to probe the role of the hydrodynamic impulse on the initiation
of bed particle saltation. These important issues must be accounted for in the mathematical
modelling of bed particle saltation not only to mirror this natural phenomenon but also to
reconcile theory and practice. Therefore, further research is required to build a promising model
of bed particle saltation by addressing the aforementioned issues.
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