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a b s t r a c t

Ecological niche models (ENM), an effective tool to predict the potential distribution of
invasive species, are often built on assumptions of niche conservatism between native and
invasive ranges and genetic uniformity of the invasive population. In this study, we have
incorporated genetic information with ENM to generate projected distribution of the
invasive species Mikania micrantha for which two genetic clusters were identified in South
and Southeast Asia. Climatic niches were compared between native and invasive ranges, as
well as between invasive ranges of two lineages by using multivariate and univariate
analyses. Ecological niche models were built with MaxEnt, using occurrence data of two
lineages separately, together and also using native range data. Predictive abilities of the
models were compared and potential distributions of the two lineages were predicted
under present and future climate scenarios. The models were projected on the native
range to identify climatically suitable areas for each lineage. Significant differences be-
tween climatic niches of the two invasive lineages were found and unique climatically
suitable areas for each lineage were identified. A large area of South and Southeast Asia
was found to be climatically suitable for both lineages. Under climate change scenarios,
pole ward range expansion for one lineage and decrease in range size along marginal areas
for another lineage were predicted. However, high amount of niche unfilling for both the
lineages indicated that if introduced, the lineages can establish in cold and dry areas of the
invasive range. The evidence of niche abandonment between native and invasive ranges
indicated presence of other lineages in its native range which are not yet introduced in this
region. These findings provided baseline data for implementing management strategies at
early stage of invasion and quarantine measures to protect this region from future in-
vasions. Climatically suitable areas in the native range were identified for both lineages
which can be prioritized for conducting surveys for identification of source populations
and biological control agents. Our study highlights the importance of integrating genetic
data in future ENM approaches to have finer scale information of species’ distribution,
which can be utilized to develop region-specific and climate change-integrated manage-
ment strategies for invasive species.
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1. Introduction

Biological invasions are nowconsidered amajor global challenge for the conservation of natural resources and biodiversity
(Simberloff et al., 2013). The similarity of climatic conditions between the native and invaded ranges is one of the crucial
factors for successful invasion of an alien species (Williamson, 2006). Ecological niche models (ENM) are powerful tools to
identify areas in a novel habitat that are climatically suitable for an invasive species (Elith et al., 2006; Elith and Leathwick,
2009) and are frequently used towards understanding the potential distribution of invasive species (Elith, 2017; Mainali et al.,
2015; Padalia et al., 2014) under current and future climate change scenarios.

Two fundamental assumptions of classical ENM approaches are niche conservatism and genetic uniformity of a species
throughout its range. The niche conservatism hypothesis assumes that a species will conserve its climatic niche over space
and time, implying that an invasive species will occupy a similar climatic envelope in both native and invaded ranges
(Peterson et al., 1999). The genetic uniformity hypothesis assumes absence of genetic variation in a species across its
geographic distribution (Ikeda et al., 2017). While a number of studies on invasive species have confirmed spatial and
temporal niche conservatism between native and invasive habitats (Petitpierre et al., 2012), contrasting examples of niche
shift were also reported (Atwater et al., 2018; Broennimann et al., 2007). In the case of range-shifting species, assuming niche
conservatism between native and invaded ranges may over- or underestimate the predicted distribution under present and
future climate conditions (Elith et al., 2010). On the other hand, the influence of genetic diversity on invasion success has been
long recognized (Baker and Stebbins, 1965). Genetic diversity may lead to local adaptation, which is defined as the shift of
phenotypic traits in response to environmental heterogeneity (Cort�es, 2017; Gentili et al., 2018). Locally adapted genotypes
could vary in their climatic requirement and therefore, will spread differentially under changing climate conditions
(Schierenbeck, 2017). In this context, testing niche conservatism and the incorporation of genetic information whenever
available, becomes crucial for predictive accuracy of ENM, especially when predicting the potential distribution of an invasive
alien species for future climate change scenarios (Early and Sax, 2014; Ikeda et al., 2017).

A number of studies on tree species [e.g. Populus fremontii (Ikeda et al., 2017); Pinus strobus (Joyce and Rehfeldt, 2013)]
have demonstrated that incorporation of niche and genetic information into ENM has significantly improved model pre-
dictive accuracy (Alvarado-Serrano and Knowles, 2014). However, similar application on invasive species is rare (but see Zhu
et al. (2017)), suggesting that there is a clear need to increase the numbers of studies by including global invasive species
(species with ranges spanning more than one continent) and identifying their potential distribution in developing economies
of the world where the majority of the world's biodiversity hotspots are found. The threat of invasive alien species is set to be
much higher in the coming decades in the economically developing regions where invasions are least recognized and studied
(Early et al., 2016).

To fill these research gaps, the present study has been undertaken to model the invasion potential of one of the hundred
worst weeds of the world (Lowe et al., 2000),Mikania micrantha Kunth (Asteraceae), under present and future climate change
scenarios. Native to Mexico, Central America, the Caribbean and tropical South America, M. micrantha has now spread to
Oceania, South and Southeast Asian countries and southern Florida (Ellison and Sankaran, 2017). Due to its fast growth rate
and creeping growth form,M. micrantha smothers other plant species and causes extensive economic and ecological impacts
on natural forests, plantations and agricultural systems across its invasive range (Tripathi et al., 2012). Recent molecular
studies involving populations from South and Southeast Asia identified two genetic clusters of M. micrantha and these two
genetic lineages were also presumably introduced from different source populations (Yang et al., 2017) and spread through
different routes in its invasive range (Banerjee et al., 2019).

In this context, we can incorporate this genetic cluster information into ENM to generate lineage level projected distri-
butions ofM. micrantha in South and Southeast Asia (hereafter, invasive range). Previous studies have predicted the potential
distribution of M. micrantha using ENM at regional (Choudhury et al., 2016), national (Iyer et al., 2019) and global (Day et al.,
2016) scales under both present and future climatic situations (Shrestha et al., 2018). We hypothesized that in comparison to
the conventional ENM (i.e. considering all genotype information together), models built for two lineages separately will
provide finer scale estimate of the potential distribution of M. micrantha and have better interpretability for guiding its
management actions. Many successful invasions were associated with the occurrence of multiple introductions, combining
genotypes from differentiated source populations (Bock et al., 2015; Dlugosch and Parker, 2008). Given the wide ecological
amplitude of M. micrantha (Banerjee et al., 2017b), we can clarify the invasive potential of this species in this region by
hypothesizing that both lineages can grow throughout the invasive range. Therefore, this study was undertaken with the
following objectives: 1) to test whether the climatic niche ofM. micranthawas conserved between native and invasive ranges
(niche differentiation in environmental space), 2) to compare invasion potential of the two lineages in the invasive range
(niche differentiation in the geographic space), and 3) to predict the impact of climate change on the distribution of two
lineages in the invasive range.
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2. Materials and methods

2.1. Collection of occurrence data and environmental variables

M. micrantha occurrence data from both native and invasive ranges were sourced from the Global Biodiversity Information
Facility (GBIF), herbarium databases and previously published research papers (1950e2015). GBIF database was searched
using the search string: ‘Scientific name:Mikania micrantha Kunth’(https://doi.org/10.15468/dl.h4ymbn).We consulted seven
herbaria and four literature databases (Invasive Species Specialist Group, CABI, Google Scholar, and PIER) to collect the
occurrence records. Considerable ambiguity exists in literature over the identity of the species present in this region due to e

1) synonymous use of three names to identify the species as M. cordata, M. scandens and M. micrantha; and 2) overlapping
native range of M. cordata (Hainan in China, Indonesia, Malaysia, Myanmar, Philippines, Taiwan, Thailand; CABI Invasive
Species Compendium - https://www.cabi.org/isc/datasheet/118575#todistributionTable) with the invasive range of M.
micrantha in Asia. To avoid any confusion arising from this taxonomic ambiguity, we searched the literature databases using
the following keywords: ‘Mikania’; ‘invasion’; ‘invasive plants’. We considered literature reports with the specific epithet ‘M.
micrantha’ and screened the literature records by - 1) discarding the reports on M. cordata from its native range (which
overlapped part of our study region) and studies without any species information, 2) considering reports of M. scandens (a
native of northern USA) and M. cordata (outside its native range) as misidentification of M. micrantha (Holmes, 1982; Parker,
1972). Each herbarium specimen was checked for possible misidentification (except for digital collections), and location
information from label data was recorded. Geographic coordinates (longitude and latitude) were collected from herbarium
records (n¼ 392) and literature reports (n¼ 160). Locality descriptions and Google Earth™ was used to georeference
occurrence data lacking geographic coordinates at a precision level of two decimal degrees. Furthermore, occurrence records
collected during our field surveys in part of its invasive range (southern China, east, northeast and south India) were also used.
Since our sampling locations did not overlapwith the native range ofM. cordata in Asia, the samples were positively identified
as M. micrantha. The details of occurrence data sources have been provided in Appendix A and the field sampling locations
have been given in Appendix B in Supporting Information.

The invasive range occurrences were subset for the study region and we considered occurrence records only from those
countries in South and Southeast Asia for which genetic information and invasion routes of M. micrantha are available.
Occurrence records were further screened for duplicates and were spatially rarefied [using SDMtoolbox 2.3 in ArcMap 10.2
(Brown, 2014);] by selecting a single point per grid cell (cell size of 10 km) to avoid model over-fitting and to ensure the
validity of statistical analysis. A total of 879 occurrence records were retained for the native region and 352 records for the
invasive range. The occurrence records of the invasive range were divided into two lineages e lineage 1 (n¼ 202) and lineage
2 (n¼ 150) based on previous genetic information and invasion routes of M. micrantha in South and Southeast Asian
countries. Consequently, populations from Indonesia, Malaysia, Singapore, Taiwan, south India, Hainan province of China, Sri
Lanka, Brunei and Timor-Leste were considered as lineage 1 whereas populations from east and northeast India, Myanmar,
Thailand, Philippines, southern China, Hong Kong and Macao formed lineage 2 (Fig. 1). The geographical locations of the
occurrence records have been provided in Appendix C in Supporting Information.

Nineteen bioclimatic variables were downloaded from the WorldClim database version 1.4 (http://www.worldclim.org/)
(Hijmans et al., 2005), averaged for the 1950e2000 period, at a spatial resolution of 5 arc minutes (approximately 9 km
resolution at the equator). We used FactoMineR package (Lê et al., 2008) in R to perform a principal component analysis and
visualized the correlation between the bioclimatic variables. Six bioclimatic variables namely 1) Annual mean temperature
(Bio01), 2) Temperature seasonality (Bio04), 3) Minimum temperature of the coldest week (Bio06), 4) Temperature annual
range (Bio07), 5) Annual precipitation (Bio12), and 6) Precipitation seasonality (Bio15) were chosen based on their non-
collinearity and contribution to the overall environmental variation (Appendix D). For future climate projections, we used
two representative concentration pathway scenarios of IPCC (RCP 2.6 and 8.5) for the two time periods (2050 and 2070). Since
the primary objective of this study was to assess the performance of genetically informed ENM and not entirely focused on
mapping potential distribution ofM. micrantha under changing climate, we considered one general circulation model (GCM),
namely the Hadley Global Environment Model 2-Atmosphere Ocean (HADGEM2-AO), to map the potential distribution of the
two lineages in the study area.

2.2. Niche characterization

The hypothesis of climatic niche conservatism of M. micranthawas tested using a modified Principal Component Analysis
(PCA-env) following Broennimann et al. (2012). In this approach, environmental niche was characterized by the first two axes
of the PCA built with the bioclimatic variables. By applying a kernel density function, the occurrence points of both ranges
were converted to smoothed densities of occurrences. We spatially intersected the known occurrence points of M. micrantha
(both native and invasive lineages) with the K€oppeneGeiger climate layer (available from CliMond database, https://www.
climond.org/Koppen.aspx) and the climate classes where the species is currently occupying were identified. In each region
(native, invasive lineage 1 and lineage 2), we included only those areas with the previously identified climate classes. We used
these areas as available environment (background) to the species under the assumption of unlimited dispersal. Environ-
mental niches were compared by estimating niche overlap and testing niche similarity between native and invasive ranges, as
well as the two lineages in the invasive range. Niche overlap between two ranges was estimated using Schoener's index of
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niche breadth (D). Niche similarity tests were performed at 95% confidence intervals to test a null hypothesis of similar niches
between ranges. In a niche similarity test, observed D is compared with simulated D which is generated by randomly allo-
cating known occurrences of any one range (Broennimann et al., 2012). Following the recommendation of Guisan et al. (2014),
we identified the effect of non-analogous climates on niche comparison by estimating niche overlap and testing niche
similarity for each individual climate variable. In the univariate analysis, we compared niche estimates by consideringe 1) all
the climates available in both the ranges; and 2) climates common to both the ranges after eliminating 25% of the marginal
climates. Finally, by overlapping environmental spaces of native and invasive ranges, we measured species niches by esti-
mating - unfilled niche of native range (U), overlapping niche of both the ranges (O), and expanded niche in the invasive range
(E) (Guisan et al., 2014; Petitpierre et al., 2012). These analyses were performed using the ecospat package version 3.0
(Broennimann et al., 2012) in R.

In theMESS (multivariate environmental similarity surface) analysis, the environment of grid cells occupied by the species
in projection range is compared with that of the calibration range, with respect to the set of selected bioclimatic variables
(Elith et al., 2010). The grid cells having a positive value indicates similar environment between the two ranges, whereas grid
cells with a dissimilar environment for at least one variable received negative values (Broennimann et al., 2014). We used the
dismo package version 1.1e4 (Hijmans et al., 2017) in R to compute the MESS analysis for identifying how similar the invasive
and native range projections were in comparison with the four different training datasets (occurrence data of lineage 1,
occurrences of lineage 2, all occurrences from invasive range, and occurrences from native range).

2.3. Model development and evaluation

We used Maximum Entropy Species Distribution algorithm (MaxEnt version 3.4.1) to develop the ENM for potential
distribution of M. micrantha in its invasive range. Many studies have reported MaxEnt as one of the highest performing
presence-background algorithms (Boria and Blois, 2018; Ma and Sun, 2018; Merow et al., 2013). Being a presence only model,
MaxEnt generates probability of species occurrences in a landscape by comparing the probability densities of selected
environmental variables from the known occurrence locations to that of randomly selected pseudo-absence (PA) points
across selectedmodel background. Geographic extent of a model background can influence a model's predictive ability (Barve

Fig. 1. Maps of (a) native and (b) invasive (South and Southeast Asia) ranges of M. micrantha. Small circles depict spatially unique occurrence records in native
range, and of two lineages in invasive range.
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et al., 2011; VanDerWal et al., 2009). Following the BAM (Biotic-Abiotic-Movement) framework proposed by Barve et al.
(2011), we considered the K€oppeneGeiger climate classes as the climatically suitable regions where the species could
occupy under unlimited dispersal and therefore, used these areas as the model backgrounds.

Four MaxEnt models were generated with different occurrence datasets: first, occurrence data of lineage 1 and lineage 2
were separately used in projecting the entire native and invasive ranges (model 1 andmodel 2); model 3 was developed using
all occurrences from invasive range (irrespective of lineages) and projected on the invasive range; and finally, all native
occurrence data were used to generate projected distribution in the invasive range (model 4). For simplification of the
modeling algorithms, we used the default settings (feature class and regularization) in MaxEnt for each of the four models.
Predictive accuracies of different models were tested using both threshold dependent and threshold independent ap-
proaches. Predictive accuracy of the three models was evaluated we used ten-fold cross-validation method in which 70% of
the occurrence points were used for model training and 30% points were kept for extrinsic evaluation of the model's pre-
dictive accuracy. Minimum training presence (MTP) values obtained by training localities were used as thresholds to convert
the continuous predictions generated by MaxEnt to binary predictions (pixels identified as suitable or unsuitable). Omission
rate (OR¼ proportion of test points falling in pixels not predicted suitable) was estimated and the average value of OR for 10
replications was used as ametric for threshold dependent test. In addition, we used binomial probability tests (Peterson et al.,
1999) to assess the accuracy of predicted distributions of eachmodel. Specifically, Cohen's Kappa statistics were estimated for
the threshold which minimizes the sum of sensitivity and specificity on the test data points, and predictive success was
estimated based on the proportion of correctly predicted test points for each model. Using the ROCR package (Sing et al.,
2005) in R, we calculated Area-Under-the-Curve (AUC) of the receiver-operating characteristics (ROC) plot. To avoid the
background size bias on AUC calculation (VanDerWal et al., 2009), fixed area AUCwas estimated by generating 10000 random
points on the entire K€oppeneGeiger climate background.

2.4. Mapping potential distribution

All available occurrence data for each genetic lineage was used to generate potential distribution in invasive range and as
well as to identify climate suitable regions in native range. For each map, the MTP was used to generate binary prediction.
Raster overlay analysis was conducted to identify prediction congruence between the two lineages in both native and invasive
ranges. Omission percentage of known occurrence points were used to further classify the binary maps, where 10% omission
was designated as low suitability, 10e25% omission as mid low suitability, 25e50% as mid high suitability and >50% omission
as very high suitability. Change in climatically suitability areas for M. micrantha was quantified for both time periods (2050
and 2070) and for two RCPs (2.6 and 8.5). ArcMap 10.2 was used to perform all these analyses and visualize the outputs.

3. Results

3.1. Niche conservatism and environmental analogy

The PCA analysis of 19 bioclimatic variables revealed that maximum environmental variations between native and
invasive ranges (82.3%) and between the two lineages (87.6%) were explained by the first two PCA axes. From the contribution
of the six selected variables, the three most important variables were the minimum temperature of the coldest month
(Bio06), temperature annual range (Bio07) and temperature seasonality (Bio04) (Table 1). We found high overlap [according
to (R€odder and Engler, 2011)] between the native and invasive ranges (D¼ 0.597) and low overlap was detected between the
invasive ranges of the two genetic lineages (D¼ 0.361) (Table 2). Without considering lineage information, the niche simi-
larity test revealed that the climatic niche occupied by the species in its invasive range was more similar to the climatic niche
of its native range than would be expected by chance (p¼ 0.019). The high value of niche stability (0.964) between the cli-
matic niches of the native and invasive ranges (Fig. 2) indicated that M. micrantha in the invasive range has occupied most of
its native niche. However, the null hypothesis of niche similarity was not rejected when climatic niches were compared
between the invasive ranges of lineage 1 and lineage 2 (p¼ 0.059) (Table 2). The observed niche dissimilarity was attributed
mostly to niche unfilling (0.449) in comparison to niche expansion (0.147) (Fig. 2).

Individual comparisons of the chosen climatic variables occupied by M. micrantha in its native and invasive ranges
revealed limited to low overlap for precipitation-related variables and medium to high overlap for temperature related
variables. When niche overlap was estimated between lineage 1 and lineage 2, low to medium niche overlap was found for
temperature variables, whereas precipitation-related variables showed high overlap. For all the climatic variables, the sim-
ilarity test revealed that the niches occupied by the species in the two ranges were not similar (p> 0.05) (Table 2). Univariate
analysis further revealed niche unfilling (available environment in both ranges, but occupied in native range and unoccupied
in invasive range), expansion (available environment in both ranges, but occupied in invasive range and unoccupied in native
range), and abandonment (environment available and occupied only in native range) for individual climatic variables (Table
3). For example, occurrence of M. micranthawas recorded in annual mean temperature (Bio01) range of 5e10 �C (n¼ 9) in its
native range. The similar climatic condition was within range of available environment for invasive lineage 1
(range¼ 9.1e29.2 �C) and lineage 2 (range¼ 7.1e29.2 �C) but unoccupied by both lineages (niche unfilling). Niche aban-
donment for Bio01 was also observed since a single occurrence at <5 �C was recorded from its native range, which was
beyond the limit of the available environment for both invasive lineages (Table 3). Similarly, niche unfilling in the invasive
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range of lineage 1 was also observed for Bio07, Bio12 and Bio15 whereas niche abandonment was noticed for Bio06. Niche
unfilling in the invasive range of lineage 2 was observed for Bio06, Bio12 and Bio15. Niche expansionwas only observed in the
invasive range of lineage 2 for Bio07 (Table 3).

The MESS analysis revealed varied amount of interpolation in the invasive and native ranges across different training
datasets (Fig. 3). Models trained with occurrence data of two lineages separately and native occurrence data alone could not
interpolate the environmental values of all invasive and native occurrences. This is evident from the negative values received
by invasive occurrences (36.6% using lineage 1 occurrence data, 7.1% using lineage 2 occurrence data and 11.9% using native
occurrence data) and native occurrences (28.4% using lineage 1 occurrences, 36.6% using lineage 2 occurrences and 15.9%
using combined occurrence of invasive range).

3.2. Predicted distribution of M. micrantha

3.2.1. Model evaluation
Comparing the performance of the four models using threshold dependent and independent tests, we found that models

built with occurrence data of lineage 1 and 2 could not retrieve climatically suitable habitats for lineage 2 and 1 respectively,
as evident from the high values of OR, low predictive accuracies and low AUC scores (Table 4). However, the all lineage model
(model 3) predicted the two lineage test points with higher accuracy than the individual models (model 1 and model 2). The
model built with native occurrence data (model 4) performed poorly to predict suitable habitat conditions for lineage 2, as
evident from high OR (0.005), low predictive success (0.753) and low AUC score (0.819) (Table 4).

3.2.2. Potential distribution under current climate
The potential distribution maps revealed that under present climatic conditions, 20.8% and 36.3% of the total area in South

and Southeast Asia are climatically suitable for lineage 1 (Fig. 4a) and lineage 2 (Fig. 4b) respectively. The Western Ghats of
southern India, coastal provinces of south China, Taiwan, east coast of Vietnam and Sri Lanka, and part of Philippines are
vulnerable to lineage 1 invasion (high suitability). High climatic suitability for lineage 2 was found in the northeast and
eastern India, northernMyanmar and southern China provinces. Overlay analysis between binary predictions revealed unique
areas which can be predicted from model 1 (lineage 1) and model 2 (lineage 2) (Fig. 4c). Unique areas for lineage 1 are
restricted to southwest India, coastal areas in Thailand, Indonesia and the Philippines. Most of the Indian landmass, Thailand,
and south and southeast provinces of China are climatically suitable for lineage 2. The all lineage model predicted large
amount of suitable areas (47.2%) in the invasive range than the individual lineage models (see Appendix E in Supporting

Table 1
Loadings on two PCA axes of climatic variables between native and invasive ranges and between invasive ranges of two lineages.

Climatic variable Native and invasive ranges Invasive ranges of lineage 1 and lineage 2

Axis 1 (63%) Axis 2 (19.3%) Axis 1 (67.4%) Axis 2 (20.2%)

Bio01 (Annual mean temperature) 0.754 0.525 0.750 0.594
Bio04 (Temperature seasonality) �0.875 �0.019 �0.947 �0.133
Bio06 (Minimum temp of the coldest week) 0.946 0.247 0.954 0.254
Bio07 (Temperature annual range) �0.911 0.195 �0.951 0.163
Bio12 (Annual precipitation) 0.771 �0.214 0.725 �0.384
Bio15 (Precipitation seasonality) �0.354 0.859 �0.493 0.775

Values> 0 indicate a positive contribution, whereas, those <0 indicate a negative contribution to the axis. Values in parenthesis denote percentage of
variability explained by each axis.

Table 2
Values of niche overlap (Schoener's D index) and significance value (similarity test) between native and invasive ranges as well as between invasive ranges of
two lineages, as obtained from multivariate (considering all climatic variables together) and univariate (considering each climatic variable separately)
analyses.

Climatic variable Niche comparison

Native and invasive
ranges

Invasive ranges of lineage
1 and lineage 2

D p D p

Multivariate All six variables 0.297 0.019 0.361 0.059

Univariate Bio01 (Annual mean temperature) 0.621 0.277 0.345 0.931
Bio04 (Temperature seasonality) 0.581 0.633 0.452 0.059
Bio06 (Minimum temp of the coldest week) 0.650 0.356 0.493 0.733
Bio07 (Temperature annual range) 0.458 0.812 0.391 0.416
Bio12 (Annual precipitation) 0.189 0.713 0.672 0.415
Bio15 (Precipitation seasonality) 0.346 0.990 0.686 0.376
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Information). On the other hand, model 4 failed to identify all climatically suitable areas (~5% of the suitable areas) for both
genetic lineages (see Appendix F in Supporting Information).

The individual models predicted nearly 80% of the habitat in the native range suitable for M. micrantha (Fig. 5). Overlay
analysis between binary predictions revealed that more than 50% of these areas are climatically suitable for both lineages.
However, climatically suitable unique areas for lineage 1 (27.64% of the total suitable area) are restricted in coastal areas of
Peru, Chile, Ecuador, Costa Rica, southern parts of Argentina and Venezuela, and eastern part of Brazil (Fig. 5). On the other
hand, western Brazil, eastern parts of Argentina and Bolivia, and complete ranges of Paraguay and Uruguay are climatically
suitable only for lineage 2 (21.21% of the total suitable area).

3.2.3. Potential distribution under future climate
Potential distribution of the two lineages under future climate change scenarios revealed varied patterns. Under RCP 2.6,

an increase in climatically suitable area was noted for lineage 1 by 8.3% in 2050 and by 3.8% in 2070 (Fig. 6), mostly due to the
increased number of pixels under mid-low climate classes (see Appendix E in Supporting Information). In South and
Southeast Asia, new areas, such as parts of southwest China, Philippines and northern India, were found to become
climatically suitable to lineage 1 with the low gas emission increase scenario (Fig. 6cef). Overall climate suitability was
decreased for lineage 2 by 19.2% in 2050 and 2.1% in 2070. Parts of central India, Indonesia and southern China were found to
become climatically unsuitable for lineage 2 growth in 2050. However, these areas remain suitable in 2070 (Fig. 6gej). This
pattern was consistent under high gas emission scenarios except for decreased climatic suitability for lineage 1 by 3.3% in
2070. The all lineage model predicted decrease in climatically suitable areas in 2050 and 2070 for both climate change
scenarios. Model 4 predicted an overall increase in climatic suitability under RCP 2.6. However, under RCP 8.5, climatic

Fig. 2. Visualization of climatic niches of M. micrantha in - a) native and invasive ranges and b) invasive ranges of two lineages. The green colored areas
correspond to the unfilled zone, blue areas represent the overlap zone of the two niches, and the red areas delineate the expansion zone; red arrows represent
how the center of the niche has changed between the two ranges. Green contour lines delineate the available niche in native range (a) and invasive range of
lineage 1 (b) and the red contour lines indicate the available niche in invasive range (a) and in invasive range of lineage 2 (b). The solid lines represent 100%
available environment whereas the dotted lines represent 50% of the same. (For interpretation of the references to color in this figure legend, the reader is
referred to the Web version of this article.)
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suitability was decreased by 2.4% in 2050 whereas 5.9% increase in was observed in 2070 (see Appendix G in Supporting
Information).

4. Discussion

Our study found evidence in support of our hypothesis that incorporating intraspecific genetic informationwould improve
ENM accuracy and predictive ability, under both present and future climate change scenarios. In the context of recent genetic
cluster information from invasive range, this study provided first empirical evidence of using genetic information in ENM to
characterize the invasion potential of M. micrantha in South and Southeast Asia and suggested management implications
under current and future climate change.

4.1. Identification of niche shift

We estimated niche shift using conventional ENM approach by comparing climatic niches between native and invasive
ranges aswell as using genetic cluster information inwhichwe compared climatic niches between two lineages present in the
invasive range. No significant difference between climatic niches of M. micrantha between its native and invasive ranges was
found suggesting climatic niche conservatism between the two ranges. This finding is in accordance with other studies on
terrestrial invasive species (Petitpierre et al., 2012). The observed niche differences between native and invasive ranges were
more likely due to niche unfilling, rather than niche expansion. Niche unfilling as a primary cause of niche shift has been
reported for other invasive species as well (Petitpierre et al., 2012; Webber et al., 2012) in which shorter residence time,

Table 3
Univariate analysis of niche dynamics for individual climatic variables and occupancy (O e number of occurrence records) of climate classes byM. micrantha
against available climate (B e minimum to maximum) in its native and invasive ranges (two lineages). Absence of occurrence records in invasive range
against presence in native range denotes niche unfilling (NU e if the climate is available in the invasive range) or niche abandonment (NA - if the climate is
not available in the invasive range) or niche expansion (NE) in case of presence in invasive range but absence in native range. The darker cells indicate
absence across all three ranges.
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altered biotic interactions and dispersal limitations were found to restrict an invasive species to occupy all areas with suitable
habitat conditions (Atwater et al., 2018). We found niche expansion only for temperature annual range (Bio07) in the invasive
range of lineage 2, indicating that the analogous climate of the invasive range (Bio07>30 �C) is a part of the fundamental niche
of the lineage which is presently unoccupied in its native range. Niche shift in non-analogous climate space, in the form of
niche abandonment, was also observed in the invasive ranges of the two lineages for annual mean temperature, minimum
temperature of the coldest week and precipitation seasonality. However, very few occurrence records (n< 10) in the native
range under these climate classes should be considered carefully prior to interpretation of niche shift in non-analogous
climate space.

We found a significant difference between the climatic niches of the two lineages which occupied novel climatic spaces in
their respective invasive ranges. This variation in climatic niches wasmostly explained by the temperature related variables as
lineage 2 was found having larger niche breadth and occupying warmer niches than lineage 1. The MESS analysis also
revealed that climatic niches of the two lineages of M. micrantha are different in the invasive range. This finding is in
accordance with other studies which reported climatic niche dissimilarity at the intraspecific level (Ikeda et al., 2017).
However, the marginal difference in climatic niche similarity between the two lineages (p value marginally higher than 0.05)
might be also due to clustered distribution of the occurrence records of both lineages and limited number of occurrences from
certain regions of their distributions. In this context, the observed niche differentiation between two lineages should be
interpreted carefully and further investigated with the support of occurrences across the distribution range. Nevertheless,
high values of niche unfilling and small differences in climatic similarity between the invasive ranges of the two lineages
indicated that a lot of suitable habitat is available for colonization by lineage 2. Givenmore than 100 years of residence time of
M.micrantha since introduction (first introduction in the eastern hemisphere dates from 1884; Geng et al. (2017)), this is likely
that unfilling will convert to suitability for this invasive species in the near future.

Fig. 3. Multivariate environmental similarity surface (MESS) maps of invasive range (aed) generated using occurrence data of a) lineage 1, b) lineage 2, c) both
lineages, and d) native range; and MESS maps of native range (eeh) generated using occurrence data of e) lineage 1, f) lineage 2, g) both lineages, and h) native
range. Dark green areas (positive MESS values) correspond to sites in the projection range with similar climatic conditions to the training data points; the yellow
to light red gradient (negative MESS values) indicates the degree of dissimilarity in the projection range with the climate of the training datasets. Red dots on the
MESS maps indicate geographical position of the invasive (aed) and native occurrences (eeh). (For interpretation of the references to color in this figure legend,
the reader is referred to the Web version of this article.)
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4.2. Identification of potential distribution

We considered two models using lineage information to visualize the potential distribution ofM. micrantha in its invasive
range. There are three lines of logic that affirm the validity of our approach. First, although the model built using native
occurrence data (model 4) performed well in predicting lineage 1 data, it could not predict all lineage 2 occurrences. Con-
ventional ENM has been trained on native occurrence data based on the assumption of niche conservatism between native
and invasive ranges or uses pooled data from all ranges in case of range-shifting species (Broennimann and Guisan, 2008;
Elith et al., 2010). However, our findings suggest that even if the climatic niche is conserved between native and invasive
ranges, conventional ENM approach based on native occurrence data alone may underestimate the potential distribution of
an invasive species in current and future climate conditions. The MESS analysis using native occurrences as training data
could not interpolate the available environment for invasive occurrences, thereby strengthening this inference.

Second, although the all lineage model (model 3) was found to have marginally higher prediction accuracies than the
individual models and significantly predicted the occurrence records of both genetic clusters, it overestimated current and
future suitable habitat (Ikeda et al., 2017) and cannot discriminate the climatically suitable areas for individual lineages. An
overall decrease in climatically suitable areas under future climate change scenarios was observed for the all lineage model,
similar to the findings for many invasive species (e.g. (Bezeng et al., 2017; Wan et al., 2016)). However, the genetic clusters
may vary in their responses to climate change scenarios, which might be scale-dependent or due to intraspecific variability in
responses to a changing environment. For example, climate may not be a limiting factor at the small scale at which range
expansion of lineage 1 was observed (Bellard et al., 2018). The predicted increase of lineage 1 was found towards higher
altitude; similar to that reported for other plant species (Bellard et al., 2013) andM. micrantha as well (Banerjee et al., 2017b).
This pole ward shift is restricted for lineage 2 due to the oceanic barrier around the geographic rangewhichmight explain the
predicted decrease in range size of this lineage (Bellard et al., 2018). On the other hand, climate change-driven other factors
like land use, nutrient variables, propagule pressure and anthropogenic activities may also influence the potential distribution
of an invasive species. Numerous studies have demonstrated that species' response to these factors can be influenced by
genetic diversity in the invaded range in which rapid selection of populations showing greater fitness may lead to local
adaptation and subsequent invasion success (Lavergne and Molofsky, 2007; Roman and Darling, 2007). In case of genetic
depletion of the invaded population, as frequently observed due to demographic bottleneck, plasticity of ecologically relevant
traits of a genotype is increased for taking advantage of a wider ecological niche leading to successful invasion (Spens and
Douhovnikoff, 2016; Walls, 2010). In M. micrantha, for example, common garden experiments revealed that dispersal-
related traits (plume loading, seed mass and pappus radius) were under genetic control during range expansion of this
species (Huang et al., 2015). A large number of studies also reported plasticity of functional traits in response to environ-
mental factors (Banerjee et al., 2017a; Prabu et al., 2014; Song et al., 2009). These findings are indicative that the two lineages
may respond differently to climate change and effect of these intraspecific variations on species’ distribution in the invaded
range can be masked in conventional ENM approach if all lineage information is considered together.

Finally, the individual lineage models (model 1 and 2) predicted native occurrence points with high accuracy compared to
that of all lineagemodel (model 3) and identified climatically suitable unique areas in the native range for both lineages. These
findings are in accordance with previous molecular studies on M. micrantha. For example, genetic diversity parameters of
populations collected from south India, Malaysia, Indonesia and Taiwan (i.e. lineage 1 populations of this study) were found to

Table 4
Evaluation of the four models using three metrics: omission rate of the test points, predictive success of correctly identifying location points as presence
(threshold dependent), and AUC values (threshold independent). The metric values were averaged over ten replicate runs.

Model (occurrence data) Test points (n) Threshold dependent tests Threshold independent test

Omission rate (OR) Predictive success AUC

Model 1 (lineage 1) Lineage 1 (42) 0.031 0.855 0.949
Lineage 2 (150) 0.157 0.694 0.693
All Lineage (352) 0.071 0.611 0.854
Native (879) 0.107 0.855 0.755

Model 2 (lineage 2) Lineage 1 (202) 0.161 0.625 0.745
Lineage 2 (41) 0.024 0.902 0.940
All Lineage (352) 0.074 0.743 0.833
Native (879) 0.394 0.968 0.464

Model 3 (all lineages) Lineage 1 (202) 0.0005 0.883 0.952
Lineage 2 (150) 0.0027 0.913 0.925
All Lineage (352) 0.0048 0.883 0.929
Native (254) 0.053 0.831 0.658

Model 4 (native) Lineage 1 (202) 0 0.854 0.936
Lineage 2 (150) 0.005 0.753 0.819
All Lineage (352) 0.002 0.611 0.854
Native (254) 0.002 0.754 0.819
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Fig. 4. Projected distribution of two lineages of M. micrantha in South and Southeast Asia e a) lineage 1, b) lineage 2, and c) overlay map of binary projections of
the two lineages. Legends in ‘a’ and ‘b’ depict five climate suitability classes based on thresholds calculated in terms of minimum training presence of known
occurrences; legend in ‘c’ indicate the areas in the invasive range found climatically suitable for lineage 1, lineage 2, both lineages, and not suitable.
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be similar to populations sampled from Costa Rica (Yang et al., 2017), where climatically suitable areas were found to be
unique for lineage 1.

4.3. Management implications

A considerable amount of research has demonstrated that predictive modeling is an effective management tool for
invasive alien species. Our study added novel dimensions by integrating genetic cluster information in the ENM approach and
found evidence which showed that genetically informed ENM can improve model interpretability and have important
management implications.

Successful management of an invasive species often depends on accurate identification of current and future suitable
habitat to be colonized by it. A large area of South and Southeast Asia was identified as climatically suitable for invasion ofM.
micrantha. In addition, potential distribution of lineage 1 was found to move pole-ward under climate change scenarios
whereas niche unfilling of lineage 2 was mainly observed for cold temperature (Bio01 and Bio06) and dry environment
(Bio12). These findings suggest that if introduced, the lineages can establish in cold and dry areas of the invasive range. The

Fig. 5. Overlay map of binary projections of two lineages of M. micrantha on its native range e Central and South America, and Caribbean islands. Legends depict
the areas in the native range found climatically suitable for lineage 1, lineage 2, both lineages, and not suitable. The countries from where classical biological
control agents have been released in the South and Southeast Asia have been identified.
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introduction of M. micrantha in these climate classes seems likely given the anthropogenic activities in this region. This in-
formation can provide a baseline for implementing early detection and rapid response strategies for new invasions (Barbet-
Massin et al., 2018; Crall et al., 2013; Ervin and Holly, 2011) and devising scientifically informed site-specific management
policies at an early stage of invasion (Clements et al., 2019). The evidence of niche abandonment for cold environment (Bio1
and Bio6) between native and invasive ranges indicates presence of other lineages in its native range which are not yet
introduced in this region. In this context, quarantine measures should be implemented to protect this region from invasion of
new lineages from its native range.

This study provides preliminary evidence that climate matching technique may be useful to identify probable source
populations of the two lineages of M. micrantha which were presumably introduced in this region from different source
populations at different times. Previous studies have also indicated that climate matching technique may provide valuable
insights in the introduction and evolutionary pathways of invasive species (Chown et al., 2015). This information may also be
used to identify areas in native range for sampling classical biological control (CBC) agents of M. micrantha (e.g. Puccinia
spegazzinii, Dietelia portoricensisa). While the susceptibility of the CBC agent to the target invasive species is the primary
requisite for successful biological control operations (Ellison et al., 2008), climatic compatibility between the areas of origin
and introduction can influence successful establishment and/or vigorous population growth of the CBC agent [(Robertson
et al., 2008) and references therein]. Indeed, a growing number of studies have used climate matching techniques to iden-
tify the potential sampling areas of CBC agents (Dhileepan et al., 2006; Mukherjee et al., 2011; Sun et al., 2017; Sutton, 2019).
The information of climatic niche difference of the two lineages of M. micrantha in its invasive and native ranges can be used
to fine-tune the sampling areas of the CBC agents after host specificity of the agent for the particular lineage is confirmed.

4.4. Limitations and future directions

Although the methodological approach of this study is applicable for other invasion scenarios, we identified scopes of
further improvements and addressed these uncertainties for consideration in future endeavors. First, in spite of known
distribution ofM. micrantha throughout South and Southeast Asia (Ellison and Sankaran, 2017), the occurrence data found in
the databases was clustered around certain regions (e.g. Taiwan) and could not be exhaustive for its entire invasive range.
Although consultation of key herbaria and literature reports addressed this issue to some extent in this study, future ENM
approaches should consider using occurrences from data deficient regions (e.g. from local herbaria) to characterize climatic
niches and identify potential distribution of an invasive species in its invasive range. Second, we considered one future

Fig. 6. Current and future potential distribution of M. micrantha in South and Southeast Asia, according to two different climate change scenarios (RCP 2.6 and
RCP 8.5); aeb: binary predictions for lineage 1 and lineage 2 under current climate conditions; cef: overlay map showing changes in the predicted distributions
of lineage 1 by 2050 according to RCP 2.6 (c) and 8.5 (d) and by 2070 according to RCP 2.6 (e) and 8.5 (f); gej: overlay map showing changes in the predicted
distributions of lineage 2 by 2050 according to RCP 2.6 (g) and 8.5 (h) and by 2070 according to RCP 2.6 (i) and 8.5 (j); k: Changes in percentage of current suitable
area for both lineages in 2050 and 2070 under two future climate scenarios.
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climate change scenario in this study to assess the performance of genetically informed ENM over conventional approach.
Given the differential responses of the two lineages ofM. micrantha in future climate condition and wide variability in rainfall
and temperature patterns across different climate change scenarios for this region, it would be interesting to explore the
species' responses across a range of representative concentration pathways and more realistic general circulation models.
Third, our study emphasized that future ENM should use genetic information from both native and invasive ranges and
consider the response capacities of the genetic lineages across the environmental gradient for a better understanding of the
potential distribution. This may help to identify new lineages of an existing invasive species to be introduced in a region,
assess their potential distributions, and implement proactive management strategies. Toward this end, controlled experi-
ments should be conducted to identify species’ response to environment (local adaptation and/or phenotypic plasticity) and
evolution of competitive ability of different genetic lineages in the invaded range. This information will further help to
validate the potential distribution of the species under present and future climate scenarios. Finally, the climate matching
technique can be applied to identify climatically suitable areas for the host and the susceptible CBC agent in the native range
and overlapping their distributions may help in prioritizing regions in the native range to conduct future surveys for CBC
agents (Trethowan et al., 2011).
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