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1  | INTRODUCTION

Following the highly influential text, Burnham and Anderson (2002), 
on model selection, ecologists and conservation biologists have dras‐
tically shifted their inferential practice from the “hypothesis test‐
ing” approach to the more appropriate “hypothesis discrimination” 

approach (Johnson & Omland, 2004). To date, Burnham and 
Anderson (2002) has been cited 44,168 times (as on January 3, 
2019—Google Scholar), demonstrating the impact of this text. One 
may argue that this contribution has helped increase the pace of 
growth in ecological knowledge because it has paved the way for 
researchers to draw inferences more robustly because of the ability 
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Abstract
A vast amount of ecological knowledge generated over the past two decades has 
hinged upon the ability of model selection methods to discriminate among various 
ecological hypotheses. The last decade has seen the rise of Bayesian hierarchical 
models in ecology. Consequently, commonly used tools, such as the AIC, become 
largely inapplicable and there appears to be no consensus about a particular model 
selection tool that can be universally applied. We focus on a specific class of com‐
peting Bayesian spatial capture–recapture (SCR) models and apply and evaluate 
some of the recommended Bayesian model selection tools: (1) Bayes Factor—using 
(a) Gelfand‐Dey and (b) harmonic mean methods, (2) Deviance Information Criterion 
(DIC), (3) Watanabe‐Akaike's Information Criterion (WAIC) and (4) posterior predic‐
tive loss criterion. In all, we evaluate 25 variants of model selection tools in our study. 
We evaluate these model selection tools from the standpoint of selecting the “true” 
model and parameter estimation. In all, we generate 120 simulated data sets using 
the true model and assess the frequency with which the true model is selected and 
how well the tool estimates N (population size), a parameter of much importance to 
ecologists. We find that when information content is low in the data, no particular 
model selection tool can be recommended to help realize, simultaneously, both the 
goals of model selection and parameter estimation. But, in general (when we con‐
sider both the objectives together), we recommend the use of our application of the 
Bayes Factor (Gelfand‐Dey with MAP approximation) for Bayesian SCR models. Our 
study highlights the point that although new model selection tools are emerging (e.g., 
WAIC) in the applied statistics literature, those tools based on sound theory even 
under approximation may still perform much better.
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to now assess the influence of various competing a priori hypotheses 
(models) without altering the study question to suit the restrictive 
hypothesis testing paradigm (Bolker, 2008).

Since a large amount of ecological data are based on field ob‐
servations, it called for ecologists to take the approach of “detec‐
tives” rather than “hypothetico‐deductive” scientists by formulating 
models using likelihood functions to confront various a priori hy‐
potheses using observational data (Hilborn & Mangel, 1997). And 
by maximizing the likelihood and using a model selection tool, such 
as the Akaike's information criterion (Burnham & Anderson, 2002), 
researchers found a way to place increased faith on models favored 
by such criteria. Thus, a vast amount of ecological knowledge gen‐
erated has relied on the robustness of such model selection tools in 
accurately discriminating hypotheses.

Recently, there has been an increased use of hierarchical mod‐
els in ecology since they appear to address two important issues: 
(a) ecological scales are naturally hierarchical in structure and (b) 
hierarchical models form a natural way of incorporating the obser‐
vation process (Royle & Dorazio, 2008). With powerful tools such 
as the MCMC, it is now possible to confront complex ecological 
models with data in a Bayesian inferential framework (Bolker, 2008). 
However, it remains unclear as to how to discriminate among com‐
peting hypotheses (models) because popular model selection crite‐
ria (such as AIC, BIC, or DIC; Burnham & Anderson, 2002) are not 
easy to apply or work poorly for complex hierarchical models (Millar, 
2009).

It is well known that, asymptotically, the Bayes factor is the pre‐
ferred model selection tool due to its consistency property, that is, 
to identify the true data‐generating model if (and only if) the true 
data‐generating model is included in the model set and if the data 
tend to the limit of infinite informativeness (Ghosh, Delampady, & 
Samanta, 2006; Robert, 2007). However, this property holds only 
under certain regularity conditions that are often difficult to verify 
for complex models (Berger, Ghosh, & Mukhopadhyay, 2003; Dass & 
Lee, 2004; Ghosh & Samanta, 2001). More prominently, there is vast 
literature expressing the difficulties in computing the marginal likeli‐
hood in applied statistical problems (Chan & Eisenstat, 2015; Wang, 
2018). Hence, it becomes necessary to also consider alternatives to 
the Bayes factor or to find novel ways of applying them in practice.

Recently, Hooten and Hobbs (2015) summarized a wide array of 
Bayesian model selection methods that are available to ecologists. 
However, the generality of the recommendations provided by them 
remains unknown. Given such innate difficulties involved in discov‐
ering the “ideal” model selection tool both from the standpoint of 
theory and its application to a broad class of models, it appears to 
be prudent to explore the model selection issue by conditioning, at 
least, on a particular class of models.

Here, we evaluate various Bayesian model selection tools on a 
class of Bayesian spatial capture–recapture (SCR) models that are 
now used frequently for animal density estimation (Royle, Chandler, 
Sollmann, & Gardner, 2013). Although, previously, Goldberg et al. 
(2015) has attempted to apply the Bayes Factor (Gelfand‐Dey es‐
timator) in an abundance estimation problem for leopards (Panthera 

pardus), their approach of computing the ratio term in the estimator 
seems inaccurate in the context of how the denominator has to be 
computed according to Gelfand and Dey (1994). Thus, we evaluate 
various Bayesian model selection tools by: (a) defining a class of 
competing models (in our case, these include the model developed in 
Dey, Delampady, Karanth, and Gopalaswamy (2019) along with sim‐
plified alternatives) that vary both in terms of structural and model 
complexity (b) simulating data sets from a “true” model (c) practi‐
cally implementing a variety of Bayesian model selection tools, and 
in specific cases, also proposing alternatives previously not defined 
(d) assessing the efficacy of these implementations from the stand‐
point of model selection and parameter estimation and (e) providing 
recommendations to practitioners based on our results.

2  | METHODS

We describe here the sampling design and development of the com‐
peting models in the candidate model set.

2.1 | The candidate model set

Capture–recapture surveys are conducted by placing an array of 
detectors (e.g., camera traps, hair snares) to sample the species of 
interest within a bounded region over a fixed period of time. As an 
extension, spatial capture–recapture (SCR) models draw inference 
on the spatial distribution of animals using their spatial locations 
from the recorded capture–recapture samples (Royle et al., 2013).

In photographic capture–recapture surveys, an array of camera 
traps are placed over the study area. Each camera trap station con‐
sists of two cameras placed opposite to one another to photograph 
the flanks of animals passing by. Naturally marked species can be 
identified by the unique patterns on their flanks. However, an animal 
passing through a camera trap station does not necessarily result in 
identifiable flank photographs from both the sides. This is because 
there are many known and unknown factors that can influence cam‐
era firing rates. Such a detection process results in uncertain or par‐
tially identified individuals in the spatial capture—recapture sample 
and thus provided the motivation for the development of Dey et al. 
(2019). We summarize the description of the model below.

2.1.1 | Sampling situation

The notation used in this article is described in Tables 1 and 2. 
However, we describe a few variables and parameters for ease in 
the model description below. Consider a capture–recapture survey 
of a species with naturally marked individuals in which two detec‐
tors are collocated at J trap stations (within a bounded geographic 
region  ⊂ℝ

2) and kept active for K sampling occasions. An indi‐
vidual can be completely identified if both the detectors record the 
individual simultaneously at least once during the course of study 
(Royle, 2015). We assume that each detector captures some mutu‐
ally exclusive attributes of an individual. These capture outcomes 
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are recorded as binary observations y(1)
ijk

 and y(2)
ijk

 for an individual i at 
trap station xj on sampling occasion k corresponding to detectors 1 
and 2, respectively. The paired Bernoulli outcomes yijk= (y

(1)

ijk
, y

(2)

ijk
) give 

rise to bilateral spatial capture–recapture data for each individual i at 
location xj on occasion k. The array of a bilateral capture history for 
an individual i is denoted by Yi,obs= (Y

(1)

i,obs
,Y

(2)

i,obs
)= ((y

(1)

ijk
, y

(2)

ijk
))j,k, which 

is of dimension 2 × J × K. In Example 2.1, we provide an example of 
a sample data set coming out of a spatial capture–recapture survey 
with two detectors deployed at each station.
Example 2.1 Suppose	 a	 capture–recapture	 survey	 is	 conducted	

where a pair of detectors (1 and 2) are deployed at each of 
the 3 ( = J) trap stations and kept active for 4 ( = K) sampling 
occasions. Two individuals get fully identified based on their 
obtained capture histories (captured in both cameras at least 
once during the survey). The capture history for each of these 
two fully identified individuals is of dimension 2 × 3 × 4. The 
detection histories are tabulated in Table 3. Here, individual 
1 is fully identified owing to the capture event at trap 2 on 
occasion 4. Individual 1 is also fully identified as it is captured 

at trap 2 on occasion 4. We note that in practical applications, 
full identity of individuals is obtained only when there are 
metadata, such as time of capture, to ascertain simultaneous 
captures. Due to the absence of simultaneous capture events 
in the detection histories of the partially identified individu‐
als, we are uncertain about whether these histories corre‐
spond to two different individuals or to the same individual.

2.1.2 | Model likelihoods

We have considered four models, denoted by M1, M2, M3, and M4, 
and the model likelihoods of the corresponding models follow in 
Equations (1–4). Each of the four models M1–M4 are SECR models for 
partially identified capture–recapture history. The basic difference 
between M3 and M4 is that M4 does not explain the latent hierarchy 
of the two events: trap entry of an animal and subsequent detection 
conditional on trap entry, whereas the former model M3 does. M1 
uses the covariate information on sex category and allows the move‐
ment scale parameter (σ in our case) of M3 to be gender specific. The 

TA B L E  1   Notations of variables and parameters used in this article

Variables and parameters Definition

 A bounded geographic region of scientific or operational relevance where a population of individuals of certain 
species reside

N ~ Binomial (M, ψ) Population size of the superpopulation, that is, the number of individuals within 

M Maximum number of individuals within the state space 
This is a fixed quantity defined by the investigator

ψ Proportion of individuals that are real and present within 

θ Probability that an individual is male

J Number of trap stations in 

K Number of sampling occasions

R Maximum permissible value of movement range for each individual during the survey

ω0 Baseline trap entry probability in the models M1 and M2, that is, probability that an individual passes through a trap 
station assuming its center of activity is also located at that trap station

p0 Baseline detection probability in the models M2 and M4, that is, probability that an individual is detected by a 
detector assuming its center of activity is also located at that trap station

σ σ measures the spatial extent of movement around individual activity center. σ = σm for male individuals, σ = σf for 
female individuals

dij=d (si , xj)=
‖
‖‖
si−xj

‖
‖‖

Euclidean distance between points si and xj

�j(si ,ui)= �0 exp
(
−

d(si ,xj )
2

2�(ui )
2

)
Probability that an individual i passes through a trap station xj on some occasion k and σ is modeled as a function of 

individual covariate on sex category ui

�j(si)= �0 exp
(
−

d(si ,xj )
2

2�2

)
Probability that an individual i passes through a trap station xj on some occasion k

ϕ Probability that an individual i is detected by a detector on some occasion k given that it is present at that trap

Notations pertaining to 
model selection tools Definition

m̂GD(Y) Gelfand‐Dey estimator of the marginal likelihood of data m(Y)

m̂HM(Y) Harmonic mean estimator of the marginal likelihood of data m(Y)

pDIC Correction term for bias due to overfitting in DIC criterion

pWAIC Correction term for bias due to overfitting in WAIC criterion

D∞ Posterior predictive loss criterion

Note: Bold symbols represent collections (vectors).
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differences between M2 and M4 are exactly the same (see Table 4). 
We describe the specific models in below.

When detection rates in recorded samples are low due to fail‐
ure or malfunction of detectors, capture–recapture data may be 

comprised of individuals with uncertain identities or “partially iden‐
tified individuals.” Dey et al. (2019) separately accounts for the pro‐
cess of animal arrival within the detection region of a detector and 
detection process by conditioning on animal arrival—thus modeling 

TA B L E  2   Notations of latent variables and data used in this article

Latent variables Definition

S Locations of the activity centers of N animals within 

si = (si1, si2)′ Location of individual i's activity center.

Z = (z1, z2, …, zM)′ A vector of Bernoulli variables, zi = 1 if individual i is present

u = (u1, …, uM)′ A vector of Bernoulli variables, ui = 1 if individual i is male in the population and ui = 0 if it is a female

u0 (⊂u) Vector of “missing” binary observations on sexes of the list of M individuals

L=(L1, L2, …, LM)′ Each Li takes value in {1,2,…,M} and denotes the true index of ith detector 2 individual

Data Definition

xj = (xj1, xj2)′ Location of jth trap station for detectors

uobs (⊂u) Vector of “recorded” binary observations on sexes of the captured individuals

y
(1)

ijk
y
(1)

ijk
=1 if individual i is detected in detector 1 at trap station xj on occasion k, y(1)

ijk
=0 if not detected in detector 1

y
(1)
i⋅⋅ =

J∑

j=1

K∑

k=1

y
(1)

ijk Number of times individual i got detected in detector 1 over J trap stations and K occasions

y
(2)

ijk
y
(2)

ijk
=1 if individual i is detected in detector 2 at trap station xj on occasion k, y(2)

ijk
=0 if not detected in detector 2

y
(2)
i⋅⋅ =

J∑

j=1

K∑

k=1

y
(2)

ijk Number of times individual i got detected in detector 2 over J trap stations and K occasions

n Number of fully identified individuals, each of them is captured by both the detectors on at least one occasion

Y
(1)

obs
= ((y

(1)

ijk
)) Array of individual‐specific capture histories obtained by detector 1 (dimension n × J × K)

Y
(2)

obs
= ((y

(2)

ijk
)) Array of individual‐specific capture histories obtained by & detector 2 (dimension n × J × K)

Y(1) Zero augmented array of individual‐specific capture histories corresponding to detector 1 (dimension M × J × K)

Y(2) Zero augmented array of individual‐specific capture histories corresponding to detector 2 (dimension M × J × K)

Y(2*) Reordered Y(2) according to L (dimension M × J × K)

nij=
K∑

k=1

I(y
(1)

ijk
+y

(2)

ijk
>0) Number of times individual i got detected at trap j on at least one of its sides over K occasions

ni⋅ =
J∑

j=1

nij Number of times individual i got detected on at least one of its sides over J traps and K occasions

Note: Bold symbols represent collections (vectors).

TA B L E  3   An example of detection histories for two fully identified individuals and partially identified individuals is presented. The circled 
1s indicate the simultaneous captures of an individual by the detectors 1 and 2

 Occasion trap

Detectors 1

Occasion trap

Detectors 2

1 2 3 4 1 2 3 4

Fully identified indi‐
vidual 1

1 0 1 0 1 1 0 0 1 0

2 1 0 0 ① 2 0 0 0 ①

3 0 0 1 1 3 1 0 0 0

Fully identified indi‐
vidual 2

1 ① 0 0 0 1 ① 1 0 0

2 0 0 0 1 2 0 0 0 0

3 1 1 0 0 3 0 0 1 0

Partially identified 
individual

1 1 0 0 1 1 — — — —

2 0 0 1 0 2 — — — —

3 0 0 0 0 3 — — — —

Partially identified 
individual

1 — — — — 1 0 0 1 0

2 — — — — 2 1 0 0 0

3 — — — — 3 0 0 1 0



     |  11573DEY Et al.

the underlying mechanism by which we obtain different events lead‐
ing to partial identification.

The probability of animal arrival ηj (si) (termed as “trap entry 
probability”) is modeled as a decreasing function of Euclidean dis‐

tance d(si,xj)=
‖
‖
‖
si−xj

‖
‖
‖
 between individual activity center si and trap 

station xj: �j(si)=�0 exp (−d(si, xj)
2∕(2�2)). Here, ω0 is regarded as the 

“baseline trap entry probability” and σ quantifies the rate of decline 
in trap entry probability as d(si, xj) increases. The observation pro‐
cess is parameterized in terms of detection probability ϕ which de‐
notes the probability that any arbitrary individual i is detected by a 
detector on some occasion k given its arrival at that trap.

The obtained capture history observations Y(1)

obs
= ((y

(1)

ijk
))i,j,k and 

Y
(2)

obs
= ((y

(2)

ijk
))i,j,k from the two detectors 1 and 2 during a spatial cap‐

ture–recapture survey may not be synchronized as detectors often 
perform imperfectly. These two observed data arrays are then 
augmented with “all‐zero” capture histories. We denote the zero‐
augmented data sets by Y(1) and Y(2); each of them is of dimension 
M × J × K, M being an upper bound of the population size. This also 
makes the dimension of the likelihood fixed in each iteration of the 
Markov Chain Monte Carlo algorithm which in turn eases computa‐
tion. A vector of M latent binary variables z = (z1,…,zM)′	is	introduced	
where zi = 1 implies that individual i is a member of the population. 
We assume that each zi is a Bernoulli random variable with param‐
eter ψ and is independent of other zj's. Here ψ is the proportion of 
individuals that are real and present within . Thus, the true pop‐
ulation size N follows the Binomial distribution with parameters M 
and ψ. The individuals from the two lists obtained from detector 1 
and detector 2, respectively, are linked probabilistically by introduc‐
ing a latent identity variable L = (L1, L2,…, LM)′	which	is	a	one‐to‐one	
mapping from an index set of individuals captured by detector 2 to 
{1, 2,…,M} giving the true index of each of detector 2 individuals. 
Without loss of generality, the true identity of each individual in the 
population is defined to be in the row order of the capture histories 
of detector 1. Then, the rows of detector 2 data set Y(2) are reor‐
dered as indicated by L to synchronize with the individuals of the 
detector 1 data set Y(1). We denote this newly ordered detector 2 
data set as Y(2*).

It is sometimes helpful to introduce a binary covariate on sex cate‐
gory u on spatial animal movement, σ, as in Sollmann et al. (2011). We 
define σ as a function of the latent structural vector u= (u1,u2,… ,uM)

�

: �(ui)=�m, if ui = 1, that is, individual i is a male; σ(ui) = σf, if ui = 0; that 
is, individual i is a female. ui's are independently and identically distrib‐
uted Bernoulli random variables with parameter θ, θ being the proba‐
bility that an arbitrary individual in the population is male. Let uobs(⊂u) 

be a vector of binary observations on sex category of the captured 
individuals. The vector of latent missing observations in u is denoted 
by u0. Assuming that covariate information on individual sex category 
is available, the joint density of Y* and u under Dey et al. (2019) is the 
following:

where �j(si,ui)= �0 exp (−d(si,xj)
2∕(2�(ui)

2)) denotes the probability 
that an individual i passes through a trap station xj on some occasion 
k, yi⋅⋅=y

(1)
i⋅⋅ +y

(2∗)

I⋅⋅
,y
(1)
i⋅⋅ =

J∑

j=1

K∑

k=1

y
(1)

ijk
,y
(2)
i⋅⋅ =

J∑

j=1

K∑

k=1

y
(2)

ijk
,nij=

K∑

k=1

I(y
(1)

ijk
+y

(2∗)

ijk
>0) 

is the number of times individual i got detected on at least one the 
detectors over K occasions and ni⋅=

J∑

j=1

nij. The above Equation (1) can 

be regarded as zero‐inflated Bernoulli density with extra zeros com‐
ing from no trap entry. Prior to Dey et al. (2019), Royle (2015) pro‐
posed an SCR model for partially identified individuals coming from 
spatial capture–recapture surveys. The joint density of Y* and u 
under Royle (2015) is the following:

where pj (si, ui) = p0	exp(−d(si, xj)
2/(2σ(ui)

2)) denotes the probability 
that an individual i is detected at xj on occasion k. Note that, unlike 
model (Equation 1), here movement through the detection region 
is considered inherently as a part of the observation process and 
p0 is regarded as “baseline detection probability” and σ, although 
related to animal movement, is regarded as the rate of decline in 
detection probability. Qualitatively, the absence of ϕ in (Equation 2) 
distinguishes this model from (Equation 1) and can be regarded as a 
less general model. Recently, Augustine et al. (2018) extended Royle 
(2015) by introducing separate parameters to distinguish captures 
by both detectors and captures by only one of the detectors.

In the absence of the sex covariate u, the joint density of 
Y
∗
: = (Y

(1)
,Y

(2∗)
)= ((y

(1)

ijk
,y
(2∗)

ijk
)) under Dey et al. (2019) and Royle (2015) 

is, respectively, as given below:

where yi⋅⋅=y
(1)
i⋅⋅ +y

(2∗)
i⋅⋅ ,�j(si)= �0 exp (−d(si,xj)

2∕(2�2)) denotes the 
probability that an individual i passes through a trap station xj on 
some occasion k and pj(si) = p0	 exp(−d(si, xj)2/(2σ2)) denotes the 

(1)

f(Y
∗
,uobs��,�,�0, �m, �f,u0, z, S, L)

=

M�

i=1

⎡
⎢
⎢
⎢
⎢
⎢
⎣

⎧
⎪
⎪
⎨
⎪
⎪
⎩

�ui (1−�)1−ui�yi⋅⋅ (1−�)2ni⋅−yi⋅⋅
J�

j=1

�j(si, ui)
nij

{(1−�j(si, ui))+�j(si, ui)(1−�)2}K−nij

⎫
⎪
⎪
⎬
⎪
⎪
⎭

zi⎤
⎥
⎥
⎥
⎥
⎥
⎦

,

(2)

fR(Y
∗
,uobs��, p0, �m , �f,u0, z, S, L)=

M�

i=1

⎡
⎢
⎢
⎣

�

�ui (1−�)1−ui
J�

j=1

pj(si, ui)
yij⋅ (1−pj(si, ui))

2K−yij⋅

�zi⎤
⎥
⎥
⎦
,

(3)

f(Y
∗|�,�0,�,z,S,L)=

M∏

i=1

{

�yi⋅⋅ (1−�)2ni⋅−yi⋅⋅
J∏

j=1

�j(si)
nij{(1−�j(si))+�j(si)(1−�)2}K−nij

}zi

,

(4)fR(Y
∗|p0,�,z,S,L)=

M∏

i=1

J∏

j=1

{
pj(si)

yij⋅ (1−pj(si))
2K−yij⋅

}
zi

,

TA B L E  4   Specification differences in the four competing models

Model
Trap entry and detection 
parameter separated?

Sex‐specific σ (with 
sex covariate u)?

M1 Yes Yes

M2 No Yes

M3 Yes No

M4 No No
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probability that an individual i is detected at a trap station xj on some 
occasion k.

The assumed prior distributions for the model parameters are as 
follows: a uniform distribution over the interval (0,1) for the proba‐
bility parameters ϕ, ω0, p0, ψ, and θ; a uniform distribution over the 
interval (0,R) for parameters σ, σm, and σf where R is high enough to 
expect that it would be impossible for animals to exhibit movement 
as widely as this scale during sampling. The prior distributions for 
these model parameters ϕ, ω0, p0, ψ, and θ, σ, σm are assumed to be 
independent. To ensure that the marginal distribution of the data is 
well defined, we have assumed proper priors for each of these pa‐
rameters (Gopalaswamy & Delampady, 2016). We assume a uniform 
prior over the entire state space  for each location of the activity 
center si and that these si's are independently distributed. The latent 
variable L is assumed to have a uniform prior distribution over the 
permutation space of {1, …, M}. The prior specifications remain the 
same for all the model fits. The MCMC algorithm used to sample 
from the respective posterior density under each model is detailed 
in Appendix S1D. Thus, we have the four models,

M1: Model with density (Equation 1),
M2: Model with density (Equation 2),
M3: Model with density (Equation 3), and
M4: Model with density (Equation 4).

Model selection tools are used to find the “best” fitted model among 
a set of competing models. To provide an understanding of what such 
a best model is, Shmueli (2010) discusses two broad modelling philos‐
ophies—explanatory and predictive. Explanatory modeling of the data 
set is only relevant to obtain the most accurate representation of the 
underlying theory, whereas predictive modelling seeks to minimize the 
combination of bias and estimation variance. Hence, a model that ex‐
plains the data well may not have the best predictive ability and vice 
versa. This naturally leads to two performance aspects by which a 
model can be assessed—(a) how well does the model explain the ob‐
served data set, that is, to what degree of confidence can it be thought 
of as a model from which the data generated, (b) how good is its pre‐
dictive ability.

On such criteria, a wide range of model selection tools have thus 
emerged in the applied statistical literature (see Gelman, Hwang, 
& Vehtari, 2014; Höge, Guthke, & Nowak, 2019; Höge, Wöhling, & 
Nowak, 2018; Hooten & Hobbs, 2015; Kass & Raftery, 1995; for ex‐
amples). In all these cases, however, we are assuming that the “true” 
model is in the list of competing models. Such classes of problems 
are formally categorized as ‘‐closed’ (Bernardo & Smith, 1994; 
Clarke, Clarke, & Yu, 2013; Vehtari & Ojanen, 2012) and is generally 
considered to be well‐studied (Clarke, Clarke, & Yu, 2013).

However, for the practitioner, the applicability of such guide‐
lines for model selection is not clear because often such guidelines 
are formed using specific examples (Hooten & Hobbs, 2015) or 
based on asymptotic arguments in a theoretic sense (for example, 
Shibata, 1989; Stone, 1977; Watanabe, 2010). Even when the pur‐
pose of model selection is clear (explanatory or predictive) and also 

the model selection criterion is fixed, what techniques practically 
work is not clear. Practitioners often wish to confront fairly complex 
models (e.g., hierarchical models) with their data, and it is often a 
challenge to directly apply a candidate set of model selection tools 
without incorporating some approximations. Given these approxi‐
mations due to model complexity and with limited sample sizes, the 
validity of such general guidelines (Hooten & Hobbs, 2015) remains 
to be tested in practice. Therefore, in this study, we apply a range 
of model selection tools and test the validity of such general model 
selection guidelines in the context of a popular class of models, spa‐
tial capture—recapture models, used for estimating animal density of 
some of the world's most iconic species (Broekhuis & Gopalaswamy, 
2016; Elliot & Gopalaswamy, 2017; Royle, Karanth, Gopalaswamy, & 
Kumar, 2009; Sollmann et al., 2011).

2.2 | Candidate model selection tools

We have considered four different Bayesian model selection meth‐
ods for application and evaluation: Bayes factors, Deviance Information 
Criterion (DIC), Watanabe‐Akaike information criterion (WAIC), and 
posterior predictive loss. Two popular model selection tools (AIC and 
BIC; Burnham & Anderson, 2002) are not used here because they 
impose restrictive assumptions on the parameter space as the sam‐
ple size increases—situations often encountered in many hierarchical 
models (Royle & Dorazio, 2008). For example, in the SCR models we 
study here, the concept of “number of parameters” is unclear and we 
therefore cannot apply criteria such as the AIC and the BIC directly.

We clarify our aim here is to discriminate between hypotheses 
(models) and not to conduct hypothesis tests of the model param‐
eters. In the hypothesis testing paradigm that applies in our setup, 
it usually requires for models to be nested so that statistical tests 
(such as likelihood ratio tests) between different parameter values 
can be performed. However, this limitation does not apply to model 
selection under the hypothesis discrimination paradigm.

2.2.1 | Bayes factors

Model comparison using Bayes factors requires the computa‐
tion of the marginal likelihood, which involves the integration 
m(Y|Mi)= ∫ f(Y|µ,Mi)�(µ)dµ where f(Y|µ,Mi) denotes the model likeli‐
hood and π(µ) denotes the prior density of the parameters µ under Mi. 
This integration is difficult to compute in practice unless the models 
are very simple in structure, which is often not the case in ecology. 
Therefore, computation of marginal likelihood continues to be an active 
area of research in Statistics (Wang & Meng, 2016; Wang et al., 2018).

Estimation of marginal likelihood of data

Under our model settings, Y = (Y*, uobs) for models M1, M2, and 
Y = Y* for the other models M3, M4. µ denotes the collection of all 
parameters and latent variables for each model as a generic notation. 
Specifically, let µ = (µp, µs), where µp is the collection of scalar pa‐
rameters and µ s is the collection of all latent variables. The Gelfand‐
Dey estimator of marginal likelihood of data m(Y) is expressed as:
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where {µ(d): d = 1, …, Niter} is a set of MCMC draws from the posterior 
π(µ|Y) and g(µ) is a tuning density. It is to be noted that by specifying 
g(µ) = π(µ) in (Equation 5), we obtain the harmonic mean estimator of 
the marginal likelihood

Details on these estimators and their properties can be found 
in Gelfand and Dey (1994), Kass and Raftery (1995). The harmonic 
mean estimator is easy to compute by just calculating the model 
likelihood at each MCMC sample draws from the posterior distri‐
bution. Although it is known that the harmonic mean estimator is a 
consistent estimator of the marginal likelihood, as noted in Kass and 
Raftery (1995) and Newton and Raftery (1994), it can have a simula‐
tion pseudo‐bias (Lenk, 2009). This bias occurs due to the limitations 
in numerical computations. Indeed, our study here aims to assess 
how and whether these potential biases in computation influence 
the model selection process for the particular class of models we 
consider—partial identity SCR models, in our case.

For our problem, the computation of (Equation 5) requires us 
to obtain the integrated likelihoods (marginals) under the different 
models that we consider. This becomes particularly tricky in the 
presence of high‐dimensional latent variables such as u0, z, S, and L, 
which are elements of µ s.

We have developed a novel approach to compute an estimate of 
the marginal likelihood. Here we partition the parameters of a model 
into two sets (real‐valued scalar and high‐dimensional structural pa‐
rameters, which are denoted by µp and µ s, respectively) and then pro‐
pose two approximating strategies to account for the high‐dimensional 
structural parameters, µ̂s, before applying the Gelfand‐Dey estimator. 
This general approach of partitioning can be applied to many other 
classes of hierarchical models as well and not limited to SCR models.

We describe below two approximating approaches to compute 
the Gelfand‐Dey estimator: the maximum a posteriori (MAP) ap‐
proximation approach and the integrated likelihood (IL) approach.

Approach 1: MAP approximation

In this approach, we fix the high‐dimensional variables at their MAP 
estimates µ̂s, assuming that their posterior distributions are well sum‐
marized by these estimates, which are derived from the MCMC draws. 
The Gelfand‐Dey estimator is then computed using the formula,

where {(µ(d)
p ,µ

(d)
s ): d=1, … ,Niter} is a set of MCMC draws from the pos‐

terior π(µp, µ s|Y). We begin with (µ(d0)
p ,µ

(d0)
s ) as an initial estimate of (µp, 

µ s) where f(Y|µ(d0)
p ,µ

(d0)
s )�(µ

(d0)
p ,µ

(d0)
s )=maxd{f(Y|µ

(d)
p ,µ

(d)
s )�(µ

(d)
p ,µ

(d)
s )}.

This estimate of the posterior mode of (µp, µs) may not be opti‐
mal since in our high‐dimensional parameter setting, an MCMC sam‐
ple of a practical size may not be enough to extensively explore the 

posterior surface. We, therefore, fix one of the parameters µs=µ
(d0)
s  

and explore the posterior surface to find d1 such that 

f(Y|µ(d1)
p ,µ

(d0)
s )�(µ

(d1)
p ,µ

(d0)
s )=maxd

{
f(Y|µ(d)

p ,µ
(d0)
s )�(µ

(d)
p ,µ

(d0)
s )

}
. In this 

way, we obtain an improved MAP estimate of (µp, µ s), (µ
(d1)
p ,µ

(d0)
s ), if 

f(Y|µ(d1)
p ,µ

(d0)
s )𝜋(µ

(d1)
p ,µ

(d0)
s )> f(Y|µ(d0)

p ,µ
(d0)
s )𝜋(µ

(d0)
p ,µ

(d0)
s ).

Similarly, we then fix µp=µ
(d1)
p  and find µ(d2)

s . This procedure is 
continued iteratively to eventually give us the best MAP estimate of 
the posterior mode (µ̂p, µ̂s). Suitable transformations of the param‐
eters ensure that all the points in {(µ(a)

p ,µ
(b)
s ): a,b=1, … ,Niter; a≠b} 

belong to the posterior support. A single MCMC chain is to be used 
for the algorithm, and we have shown that the obtained MAP esti‐
mate using our algorithm will be better than the usual estimate (µp, 
µ s) (see Appendix S1A). In theory, we can also increase sample size 
by merging all the chain outputs after convergence.

Approach 2: Integrated likelihood (IL) approximation

Ideally, we would like to compute the marginal likelihood m(Y) 
by integrating out all the latent variables with respect to their 
corresponding prior distributions from the model likelihoods. 
However, in the case of model likelihoods (Equations 1–4), this 
integration is computationally difficult for the permutation vec‐
tor L because of its very large support. The integration over the 
variables u0 and z can be performed analytically. The integration 
over S is evaluated numerically by partitioning the region  into 
a sufficiently fine grid and then evaluating a Riemann sum (as di‐
rect integration cannot be expressed in a closed form). This inte‐
grated likelihood can then be used in (Equation 5) for estimating 
the marginal likelihood

One downside of the IL approximation approach is the lack of 
clarity about the interdependencies between the latent variables u0, 
z, S, and L after carrying out the integrations. The derivations of the 
integrated likelihoods for each of the four models M1–M4 are given 
in Appendix S1B by ignoring any possible interdependencies. We 
have also assessed the robustness of the Gelfand‐Dey estimator by 
computing the marginal likelihood estimates using different tuning 
densities, for example, multivariate normal density, multivariate‐t 
density with varying degrees of freedom, and the truncated normal 
density following the suggestion of Geweke (1999). These technical 
details are described in Appendix S1C.

2.2.2 | Deviance information criterion

Deviance is defined as D(µ)	=	−2log	f(Y|µ). The deviance information 
criterion (DIC) is then defined as DIC=D(µ̂)+2pDIC, where µ̂ is an es‐
timate of µ. The term pDIC can be viewed as effective number of pa‐
rameters, which is a bias correction in evaluating a model's predictive 
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accuracy. Two versions of pDIC are generally used (Gelman, Carlin, 
et al., 2014; Spiegelhalter, Best, Carlin, & van der Linde, 2002):

Although pDIC1 has been considered to be numerically more stable, 
pDIC2 has the advantage of being always positive (Gelman, Hwang, & 
Vehtari, 2014). A model with smaller DIC value is preferred. Model com‐
parison using DIC is not invariant to parameterization and depends on 
the components of the model likelihood to be considered as the like‐
lihood. Spiegelhalter et al. (2002) suggests that practitioners carefully 
decide on the parameters of interest so that they can avoid this potential 
pitfall. This advice is often difficult to implement in practice, especially 
when there exists inherent ambiguity in the interpretation of latent pa‐
rameters. We note that Celeux, Forbes, Robert, and Titterington (2006) 
suggests several forms for the DIC that can be used for different hierar‐
chical models but does not recommend any particular form as the best.

For the computation of deviance, we have use the MAP estimate 
of µ to obtain µ̂ instead of the posterior mean, due to the presence 
of binary latent variables and unknown permutation vectors in the 
likelihood. We have then computed two versions of pDIC (Gelman, 
Carlin, et al., 2014; Hooten & Hobbs, 2015) using the MCMC draws 
{µ(d):d=1,… ,Niter} from π(µ|Y) as follows:

2.2.3 | Watanabe‐Akaike information criterion

The Watanabe‐Akaike information criterion (WAIC) is a Bayesian 
version of the AIC as it uses the posterior predictive distribution of 
the data to estimate the out‐of‐sample predictive accuracy of the 
model. Watanabe (2010) introduced the WAIC criterion based on 
the assumption of independence between the data points and has 
shown its asymptotic equivalence with cross‐validation. In our model 
formulations, we have assumed that the different data points corre‐
spond to capture–recapture data set for each of the M individuals. 

The WAIC is then defined as WAIC=−2
M∑

i=1

log�
µ�Y

�
f(Yi�µ)

�
+2pWAIC.  

A model with smaller WAIC value is preferred. In computing WAIC, 
we partition data Y in terms of individuals (Y1, Y2,…, YM). We compute 
the two commonly used versions of pWAIC (Hooten & Hobbs, 2015) 
using MCMC draws{µ(d): d = 1,…,Niter} from π (µ|Y) as follows:

We propose another version for pWAIC based on absolute error 
loss, recognizing that large variability in µ(d) and the magnitude of 
squared errors themselves may have an impact on the efficiency of 
pWAIC of the above forms:

From a decision‐theoretic perspective, we think it is interesting 
to compare WAIC2, which is based on a square error loss function 
with WAIC3 that is based on an absolute error loss function. The 
comparison based on a simulated data analysis is described later in 
Section 4.

2.2.4 | Posterior predictive loss

Gelfand and Ghosh (1998) derived a model selection criterion, popu‐
larly known as the posterior predictive loss criterion, by adopting 
a decision‐theoretic approach for measuring predictive accuracy 
of a model. The posterior predictive loss Dw criterion (based on a 
square error loss function) is composed of squared bias, variance 
of a new prediction, and a parameter w. The parameter w indicates 
the relative weight given to the loss for departure of the new pre‐
dicted value from the observed data against departure of the same 
from the new data. In practice, this weight is taken to be very large, 
and asymptotically as w	→∞,	the	D∞ criterion is obtained as follows 
under our model setting:

where Yvec= (y1,vec,y2,vec,… ,y2MJK,vec)
� is a vector of length 2MJK 

obtained by vectorizing observed data array Y and Yrep = (y1,rep, 
y2,rep,…,y2MJK,rep)′	represents	the	vector	of	all	 these	replicates.	The	
first term in the D∞ criterion (see Equation 13) is the goodness‐of‐fit 
term, while the second term can be interpreted as a penalty term for 
model complexity. The model with the smallest D∞ is to be preferred. 
In our analysis, the two data sets are obtained by vectorizing the two 
binary data arrays.

We compute the above expectation �
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 and variance 
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. We summarize 

the various model selection methods and their variants in Table 5. 
Considering all these model selection tools and their variants (from 
approximation approaches to setting tuning densities), our evalua‐
tion is carried out on 25 unique tools. By no means is this an exhaus‐
tive list of candidate tools because there are a large number of tools 
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available. Our purpose here really is to assess some popular tools 
and assess their efficacies on a particular class of models.

3  | EVALUATION OF THE PERFORMANCE 
OF MODEL SELECTION METHODS

3.1 | Simulation design and simulation scenarios

We have conducted simulations for 12 scenarios (provided in 
Table 6) grouped into 2 equal sized sets, to assess the performance 
of the models proposed here. We set σm = 0.3 and σf = 0.15 for the 
first set of 6 scenarios, σm = 0.4 and σf = 0.2 for the second set of 6 
scenarios. We set (ω0, ϕ) = {(0.01, 0.3), (0.05, 0.3), (0.05, 0.5), (0.03, 
0.8), (0.01, 0.9), (0.05, 0.9)}, which gives us 6 different scenarios for 

each of the two sets corresponding to the values taken by ω0 and 
ϕ. We assume that a total of 100 individuals are residing inside the 
state space of which 40 are male. Each of the simulation experiments 
is conducted within a rectangular state space of dimension 5 unit × 7 
unit (Figure 1), after setting a buffer of 1 unit in both horizontal and 
vertical directions, a 10 × 16 trapping array of total J = 160 trap 
stations has been set (trap spacing is 0.3 unit on X axis and 0.3125 
unit on Y axis). This meets the requirement suggested in Karanth 
and Nichols (2017). Each of the traps remains active for K = 50 sam‐
pling occasions simultaneously. For parameter estimation, we set the 

TA B L E  5   Bayesian model selection methods used in this study

Sl. no.
Model selection 
method Variant Approximation method Choices of tuning density Eq. No.

1. Bayes factor Gelfand‐Dey estimator MAP Multivariate normal density, 
multivar‐ iate‐t density with de‐
grees of freedom 10, 100, 500, 
1,000, 10,000 and truncated 
multivariate normal density 
with confidence coefficients 
0.90, 0,95, 0.99

(7)

2. Bayes factor Gelfand‐Dey estimator IL ‐Do‐ (8)

3. Bayes factor Harmonic mean estimator — — (6)

4. DIC pDIC1 MAP — (10)

5. DIC pDIC2 MAP — (10)

6. WAIC pWAIC1 — — (11)

7. WAIC pWAIC2 — — (11)

8. WAIC pWAIC3 — — (12)

9. Posterior predictive 
loss

— — — (13)

TA B L E  6   Parameter specifications corresponding to different 
simulation scenarios

Scenario M N NMale ω0 ϕ σm σf

1 400 100 40 0.01 0.3 0.3 0.15

2 400 100 40 0.01 0.9 0.3 0.15

3 400 100 40 0.01 0.3 0.4 0.20

4 400 100 40 0.01 0.9 0.4 0.20

5 400 100 40 0.03 0.8 0.3 0.15

6 400 100 40 0.03 0.8 0.4 0.20

7 400 100 40 0.05 0.3 0.3 0.15

8 400 100 40 0.05 0.5 0.3 0.15

9 400 100 40 0.05 0.9 0.3 0.15

10 400 100 40 0.05 0.3 0.4 0.20

11 400 100 40 0.05 0.5 0.4 0.20

12 400 100 40 0.05 0.9 0.4 0.20
F I G U R E  1   Array of trap locations (denoted by “+”) within the 
state space (0.5) × (0.7)
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maximum possible number of individuals present in the population 
(M) at 400 for all the scenarios. Since MCMC approaches are com‐
putationally time consuming, we set the data‐generating parameters 
to generate data sets of varying levels of information content. This 
strategy ensured that we capture trends in model selection per‐
formance by the different methods. The experiment is repeated 
nsim = 10 times. The MCMC samples for each of the parameters are 
obtained (each of length 30,000), and the estimates are computed 
using those chains after a burn‐in of 10,000. It takes approximately 
3 days to run a single chain of 30,000 iterations using our R code 
for model M1, approximately 2 days for model M2 and M3, and ap‐
proximately 1 day for model M4 using our R code on a DELL Precision 
Rack 7,910 Server with 40 cores and 512 GB RAM at a clock speed 
of 2.20 GHz.

Capture–recapture data sets are simulated independently under 
each of the 12 simulation scenarios (Table 6) under model M1. Recall 
that, model M1 corresponds to the statistical model in (Equation 1) 
with σ parameter modeled in terms of individual covariate on sex 
category u (see Section 2.1). Then, each simulated data set is fitted 
with all the four competing model M1, M2, M3, and M4. For a better 
mixing during the MCMC run, we transform the components of µp so 
that the transformed parameter space is the entire Euclidean space 
(details are given in Appendix S1C).

3.2 | Defining performance measures

3.2.1 | Probability of selecting the true model

In our study, since all the data sets are simulated from model M1, it is 
considered as the true model. We have computed the proportion of 
times a model selection method chooses M1 as the best out of n = 10 
simulations. This proportion will serve as an estimate for the prob‐
ability of selecting the true model. Additionally, we have also com‐
puted the proportion of times a model selection method chooses 
M2, M3, and M4, respectively. The computed proportions of selecting 
these models from the simulation study will indicate the efficacy of 
the model selection methods.

3.2.2 | Assessing the quality of 
parameter estimation

The abundance parameter N carries a lot of significance in ecol‐
ogy and conservation. Due to its importance, ecologists place 
their interests in the robustness and accuracy of its estimate, and 
will therefore rely on a model selection method that will achieve 
this by selecting that model from the model set that will provide 
the most reliable estimate of N. The precision and accuracy of the 
parameter estimate indicates the quality of the model fit, and we 
assess this by computing the average root mean square error (aver‐
age RMSE).

Suppose {µ(td): d = 1, …, Niter} denotes a set of MCMC draws from 
the posterior distribution of an arbitrary parameter µ for the t‐th 
simulated data set, t = 1,…,nsim. Mean square error (MSE) of µ for the 

t‐th simulated data set is estimated as MSE(�, t)=N−1
iter

Niter∑

d=1

(�(td)−�)2. 

Average RMSE is calculated by first averaging the estimated MSEs of 
different simulations and then taking the square root of the 
average:

Let us now summarize our experiment. The quantities related 
to the various Bayesian model selection methods (Section 2.2) 
are computed for each of the four models for the simulated data 
and analysis sets. We compare the conclusions drawn from the 
computed proportions with the conclusions drawn from average 
RMSEs of the parameters to study the behavior of the model se‐
lection methods with respect to varying information content. We 
also generate pairwise correlation plots from the MCMC draws to 
study the extent of parameter redundancy between various pairs 
of parameters as a consequence of lack of information content in 
the data.

4  | RESULTS OF THE SIMULATION STUDY

Figure 2 shows the proportion of times different estimators of Bayes 
factor favors any particular model. The subplots have different sce‐
narios 1–12 in the x‐axis and the competing models M1–M4 in the y‐
axis. Plot (a) and Plot (b) correspond to the Gelfand‐Dey estimator of 
the Bayes factor favoring any particular model using (i) the MAP ap‐
proximation approach and a multivariate normal density for tuning 
density g, (ii) the integrated likelihood approximation approach and 
a multivariate normal density for tuning density g, respectively. Plot 
(c) corresponds to the harmonic mean estimator of the Bayes factor. 
Plots (d–i) correspond to WAIC1, WAIC2, WAIC3, DIC1, DIC2, and 
posterior predictive loss, respectively.

Our results suggest that the choice of the tuning density in com‐
putation of Gelfand‐Dey estimator had no impact on model selec‐
tion (Figure 2). Thus, we focus only on the results corresponding to 
the normal tuning density. We observe that the Bayes factor with 
the GD‐MAP approximation favors M4 in 70% of the times under 
scenario 1 and favors M3 in at least 70% of the times under scenarios 
2, 3, 4, and 7. Bayes factor (GD‐MAP) is in favor of M1 more than 
80% of the times under all the remaining scenarios 5–6 and 8–12. 
As seen here, the GD‐IL approximation performs slightly worse than 
the GD‐MAP approximation (Figure 2). However, surprisingly, we 
observe that the model choices by the harmonic mean estimator of 
Bayes factor performs well and favors the true model M1 in majority 
of the scenarios.

We have considered three forms of the WAIC and two forms 
of the DIC. The corresponding plots are shown in Figure 2(d–h). 
WAIC1, WAIC3, DIC1, and DIC2 exhibit very similar tendencies in 
their model choices by favoring M3 under all the scenarios except 
scenarios 1 and 3. These four methods favor M4 under scenario 1. 

AverageRMSE(�)=

√√√
√n−1

sim

nsim∑

t=1

MSE(�, t).
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Under scenario 3, WAIC1 and DIC1 favor M3 in majority of the times, 
whereas WAIC3 and DIC2 favor M4. Like Bayes factor, these model 
selection methods (DICs and WAICs) also tend to favor simpler 
models under scenarios 1 and 3. The WAIC2 largely agrees with the 
other WAICs (and DICs) but more often selects the true model when 
data sets are more informative (Figure 2d–f). In general, DICs and 
WAICs seem to discourage the presence of high‐dimensional latent 
variables.

The plot showing the proportion of different model choices by 
posterior predictive loss is given in Figure 2i. The posterior predic‐
tive loss criterion D∞ favors models with individual sex covariates 

(M1 and M2). The posterior predictive loss also appears to select the 
true model some of the times, even when there is not sufficient in‐
formation in the data (scenarios 1 and 3).

In Figure 3, we see that the average RMSE of N is substantially 
higher in scenarios 1–3 relative to scenarios 4–12. We also have ob‐
served a substantial amount of correlation between some pairs of 
parameters involving N in the MCMC chains under scenarios 1–3 
(r(N, θ)	≈	−0.7,	r(N, σf	≈	−0.42).	However,	these	correlations	decrease	
for the other scenarios, likely due to increased information content 
in the data. For interested readers, we have also provided additional 
plots for the model selection methods (Figures 1–6), the RMSE plots 

F I G U R E  2   Plot (a): The proportion of times Gelfand‐Dey estimator of Bayes factor favors any particular model using the MAP 
approximation approach and a multivariate normal density for g. Plot (b): The proportion of times Gelfand‐Dey estimator of Bayes factor 
favors any particular model using the integrated likelihood approximation approach and a multivariate normal density for g. Plot (c): The 
proportion of times harmonic mean estimator of Bayes factor using the favors any particular model. Plots (d)–(i) correspond to WAIC1, 
WAIC2, WAIC3, DIC1, DIC2, and posterior predictive loss, respectively
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for all the parameters (Figures 7 and 8), and a representative set of 
scatter plots (Figures 9–14) in the Appendix S1E.

5  | DISCUSSION AND CONCLUSIONS

Contemporary practice of ecology and conservation biology relies 
largely on the use of model selection for hypotheses discrimination 
(Johnson & Omland, 2004). Simultaneously, there has been major 
growth in the use of hierarchical models in ecology, especially within 
the realm of Bayesian inference (Kéry & Royle, 2015; Royle & Dorazio, 
2008). These models have now enabled statistical ecologists to fairly 
easily formulate complex ecological models, elegantly deal with the 
sampling process and also fit these complex models using powerful 
tools such as the MCMC (Kéry & Royle, 2015). However, the lack 
of availability of ready‐made model selection tools when practicing 
the Bayesian inference has sometimes motivated ecologists to con‐
tinue using the likelihood‐based inferences, merely because one can 
use well‐known model selection tools such as the AIC (Burnham & 
Anderson, 2002) for inference.

To provide a context for this argument, in the spatial capture–
recapture literature, we have essentially seen the development 
of three important likelihood functions: (1) Borchers and Efford 
(2008), (2) Royle et al. (2009) and (3) Royle, Sutherland, Fuller, and 
Sun (2015). Inferences for the models (1) and (3) are by maximiz‐
ing the likelihood, while the inference for (2) is Bayesian. We note 
with interest that one of the reasons for the development of (3) 
was motivated on the pretext that model selection is much eas‐
ier (using known tools such as the AIC) for practitioners using the 
likelihood approach, in spite of the problem having been already 
solved in the Bayesian context (Royle et al., 2013). It is specially 
of concern in the context of the models we study here in that in‐
vestigators may be forced to integrate out S (activity centers of 
individuals) in order to construct tractable likelihoods and thus 
oversimplifying ecological reality. For example, by retaining the 
activity centers it is possible for investigators to confront open 
SCR models (Gardner, Sollmann, Kumar, Jathanna, & Karanth, 
2018). We therefore hope that our study motivates the continued 
use of Bayesian methods by investigators for all its advantages, 
instead of opting out of them merely for the sake of using simple 
model selection methods.

In this study, we have tried to implement some selected Bayesian 
model selection methods on a specific class of advanced Bayesian 
SCR models (Royle, 2015—with and without sex covariates; Dey et 
al. (2019)–with and without sex covariates) dealing with partially 
identified individuals. We have found our Bayes factor implementa‐
tion using the Gelfand‐Dey estimator (using the MAP approximation 
approach) to be the preferred choice as a model selection method 
over a wide range of simulation scenarios. This approach appears to 
work particularly well when information content in the data is mod‐
erate to high. The IL approximation approach also worked well but 
not as well as the MAP approximation approach perhaps because 

there exists interdependency between some of the latent variables 
which are not accurately captured during marginalization.

However, implementing Bayes factors for model selection using 
the Gelfand‐Dey estimator (with MAP approximation) is not very 
straightforward and requires investigators to incorporate some 
code during model fitting by MCMC. Interestingly, our study demon‐
strates that obtaining Bayes factors using the harmonic mean ap‐
proach for marginal likelihood computation is less demanding but yet 
serves as a very good model selection method. This finding deviates 
from the popular view among applied scientists that it is futile to 
estimate the marginal likelihood using the harmonic mean approach 
(Lartillot & Philippe, 2006; Xie, Lewis, Fan, Kuo, & Chen, 2011). We 
surmise that this finding may be attributed to the fact that when the 
priors are bounded (as we have done, but for other reasons) and does 
not permit extremely low probabilities to occur at the tails. Further, 
our emphasis here is to ask how the tool performs to select the true 
model and estimate parameters for prediction for a given analyti‐
cal setup. And it is not about how accurately the tools estimate the 
actual value of the marginal likelihood. Thus, many of the criticisms 
(Lartillot & Philippe, 2006; Xie et al., 2011) may become irrelevant in 
practice, but this would require further enquiry.

As our simulation study shows, the two goals of model selection 
and parameter estimation cannot be simultaneously achieved under 
certain circumstances (scenarios 1–3), especially when information 
content is low (indicated by high RMSE values and correlation coeffi‐
cients). Hence, researchers have to clearly prioritize their objectives 
prior to data analysis. If the goal, for example, is to find a model that 
best estimates population size N, then we recommend the use of 
Bayes factor (Gelfand‐Dey with MAP approximation) or the Bayes 
factor (harmonic mean, due to its simplicity) because these appear to 
provide the most reliable estimates of N over all the simulation sce‐
narios. However, if researchers are only interested to select the true 

F I G U R E  3   Plot of average RMSE estimates of N over different 
simulation scenarios
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model, especially when data are less informative (scenarios 1–3), we 
recommend the posterior predictive loss approach since they favor 
the true model nearly a one‐third of the times only in situations 
with such low information content. Of course, the dual objectives 
of model selection and parameter estimation are met when informa‐
tion content is moderate or high (scenarios 4–12), and as stated pre‐
viously, we recommend either the Bayes factor (Gelfand‐Dey with 
MAP approximation) or the Bayes factor (harmonic mean) in such 
cases. However, the posterior predictive loss (with the squared error 
loss function) as used here does not select the true model when in‐
formation content is moderate to high.

We also do not recommend the use of the DICs or the WAICs, 
since they do not appear to outcompete other model selection tools, 
either from the standpoint of model selection or parameter estima‐
tion, in any of the simulation scenarios. This is an interesting finding, 
because tools such as the WAIC are much newer tools developed 
by applied Bayesians and recommended for hierarchical models 
(Gelman, Carlin, et al., 2014; Hooten & Hobbs, 2015). Thus, our 
study brings back focus on the need to assess the strength of infer‐
ence from a model selection method by conditioning on a true model 
and consequently evaluating a competing set of model selection 

methods prior to selecting the most appropriate one for the prob‐
lem on hand. Table 7 summarizes the similarities and differences in 
inferences between our specific evaluation of model selection tools 
and the generally accepted evaluations. We believe this summary 
will motivate investigators to look deeper into their own models and 
the model selection methods they are using.

Our approach does not, strictly speaking, permit us to draw con‐
clusions and make inferences on the most suitable model selection 
tools beyond the restrictive set of competing models and the settings 
we have used in this study. However, we demonstrate the applicability 
of the Bayes factor on a set of structurally very complex hierarchical 
models. This was possible by using our approach of partitioning the 
real‐valued scalar and high‐dimensional structural parameters. We 
anticipate that this general approach could address difficulties faced 
by ecologists attempting to use the Bayes factors for comparing very 
complex hierarchical models. We would expect that it would be much 
easier to use the Bayes factor for relatively simpler and a much larger 
class of hierarchical models (Kéry & Royle, 2015; Royle et al., 2013). 
We note with interest that it is also unclear whether the routinely 
used AIC works as an appropriate model selection tool for MLE‐based 
SCR models as discussed in Efford and Mowat (2014). In real‐world 

TA B L E  7   Contrasting the performance of model selection tools based on the intended purpose and perceived applicability with findings 
from our specific study. In the table, we provide answers to the following questions: (a) Does this approach select the true model? (b) Does 
this approach favor models providing reliable estimates of parameters (specifically for N)? (c) How difficult is the approach to implement in 
practice? Comments in bold draw attention to the noticeable differences between the expected performance of a tool and its performance 
in our particular study

Model selection tool
Intended purpose and 
applicability Reference Findings from our specific study

Bayes factor (by 
Gelfand‐Dey 
estimator)

(a) Yes
(b) Yes
(c) Difficult

 (a) Yes, very often (MAP)
Yes, quite often (IL)
(b) Yes, very often (MAP) Yes, quite often (IL)
(c) Moderately difficult (MAP)
Moderately difficult (IL)

Bayes factor (by 
harmonic mean 
estimator)

(a) Yes, but unreliable
(b) Yes
(c) Easy

Newton and Raftery (1994), and Kass and 
Raftery (1995)

(a) Yes, very often
(b) Yes, very often
(c) Easy

DIC1 (a) No
(b) Yes
(c) Easy

Spiegelhalter et al. (2002), Gelman, Hwang, 
& Vehtari, 2014), and Hooten and Hobbs 
(2015)

(a) No
(b) No
(c) Moderately difficult

DIC2 (a) No
(b) Yes
(c) Easy

Spiegelhalter et al. (2002), Gelman, Hwang, 
& Vehtari, 2014), and Hooten and Hobbs 
(2015)

(a) No
(b) No
(c) Moderately difficult (required MAP 

estimate)

WAIC1 (a) No
(b) Yes
(c) Easy

Watanabe (2010), Gelman, Hwang, & 
Vehtari, 2014), and Hooten and Hobbs 
(2015)

(a) No
(b) No
(c) Easy

WAIC2 (a) No
(b) Yes
(c) Easy

Watanabe (2010), Gelman, Hwang, & 
Vehtari, 2014), Hooten and Hobbs (2015)

(a) No, not often
(b) Yes, but suboptimally
(c) Easy

WAIC3 (a) No
(b) Yes
(c) Easy

 (a) No
(b) No
(c) Easy

Posterior predictive 
loss

(a) No
(b) Yes
(c) Moderately difficult

Gelfand and Ghosh (1998), and Hooten 
and Hobbs (2015)

(a) No, not often
(b) Yes, but suboptimally
(c) Moderately difficult
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problems, we can almost always find proper priors for parameters 
to ensure that Bayes factors exist. Therefore, we believe it is best to 
depend on tools built on sound statistical theory (by finding suitable 
approximations) rather than seeking answers based on seemingly ele‐
gant but not well‐tested tools.
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