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Another Look at Success Probability in Linear Cryptanalysis

Subhabrata Samajder∗and Palash Sarkar
Applied Statistics Unit

Indian Statistical Institute
203, B.T.Road, Kolkata, India - 700108.
{subhabrata r,palash}@isical.ac.in

Abstract

This work studies the success probability of linear cryptanalysis. Complete expressions for the success
probability are obtained using two different approaches, namely the order statistics and the hypothesis test-
ing based approaches. We argue that the hypothesis testing based approach is theoretically more sound and
does not require a number of assumptions and approximations which are inherent in the order statistics based
approach. For analysing success probability, a unifying framework of general key randomisation hypotheses
is introduced. The previously used standard key randomisation hypotheses and the adjusted wrong key ran-
domisation hypothesis can be seen to special cases of the general framework. Derivations of expressions for the
success probability are carried out under both the settings of the plaintexts being sampled with and without
replacements. Finally, the complete picture of the dependence of the success probability on the data complexity
is derived and it is argued that in most practical scenarios, the success probability will be a monotone increasing
function of the data complexity. We believe that compared to the extant literature, our work provides a deeper
and more thorough understanding of the success probability of linear cryptanalysis.
Keywords: linear cryptanalysis, success probability, data complexity.

1 Introduction

A block cipher is a fundamental cryptographic primitive. Such a primitive injectively maps an n-bit plaintext
under the influence of a secret key to an n-bit ciphertext. The strength of a block cipher is assessed by determining
its resistance to the known standard attacks.

Linear cryptanalysis [20] is a fundamental method of attacking a block cipher. To apply linear cryptanalysis,
it is required to first obtain an approximate linear relation between the input and the output of a block cipher.
Obtaining such a relation for a well designed cipher is a non-trivial task and requires a great deal of ingenuity
along with a very careful examination of the internal structure of the mapping which defines the target block
cipher. The present work does not address this aspect of linear cryptanalysis and it will be assumed that a linear
relation is available.

The goal of (linear) cryptanalysis of a block cipher is to recover a portion of the secret key in time less than
that required by a brute force algorithm to try out all possible keys. The portion of the key which is proposed to
be recovered is called the target sub-key. An attack with such a goal is called a key recovery attack. A weaker
goal is to be able to distinguish the output of the block cipher from that of a uniform random permutation and
such attacks are called distinguishing attacks. In this work, we will concentrate only on key recovery attacks.

To apply linear cryptanalysis, it is required to obtain some data corresponding to the secret key. Such data
consists of plaintext-ciphertext pairs (Pi, Ci), i = 1, . . . , N , where Ci is obtained by encrypting Pi using the secret
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1 INTRODUCTION 2

key. The plaintexts are chosen randomly. Typically, they are considered to be chosen under uniform random
sampling with or without replacements.

Any method of determing the secret key from this data is statistical in nature. The output of the attack is
a set of candidate values for the target sub-key. The attack is successful with some probability PS if the correct
value of the target sub-key is in the set of candidate values. The size of the set of candidate values is also an
important parameter. An attack is said to have a-bit advantage if the size of the set of candidate values is a
fraction 2−a of the number of possible values of the target sub-key [26].

The goal of a statistical analysis of an attack is to be able to obtain a relation between the three fundamental
parameters N , PS and a. In this work, we concentrate on obtaining PS as a function of N and a and closely
examine the behaviour of PS as a function of N .

A linear approximation of a block cipher holds with certain probability. Broadly speaking, a key recovery
attack proceeds by testing each value of the target sub-key against the linear approximation with respect to
the available data. For the correct choice κ∗ of the target sub-key, the linear approximation holds with some
probabilty pκ∗ while for an incorrect choice κ 6= κ∗ of the target sub-key, the linear approximation holds with
some other probability pκ,κ∗ . The basis of the attack is a difference in pκ∗ and pκ,κ∗ . The detailed examination
of the internal structure of the block cipher leads to an estimate of pκ∗ , while pκ,κ∗ is obtained from an analysis
of the behaviour of a random mapping.

To perform a statistical analysis, it is required to hypothesise the values of pκ∗ and pκ,κ∗ . The hypothesis
on pκ∗ is called the right key randomisation hypothesis, while the hypothesis on pκ,κ∗ is called the wrong key
randomisation hypothesis. Until a few years ago, it was typical to hypothesis that pκ∗ is a constant p 6= 1/2
while pκ,κ∗ = 1/2. These are called the standard right and wrong key randomisation hypothesis respectively.

The adjusted wrong key randomisation hypothesis was introduced by Bogdanov and Tischhauser in [8]. Based
on a previous work by Daemen and Rijmen [9], it was hypothesised that pκ,κ∗ itself is a random variable following
the normal distribution N (1/2, 2−n−2). A later work by Ashur, Beyne and Rijmen [1] also used the adjusted
wrong key randomisation hypothesis. The difference in [8] and [1] is in the manner in which the plaintexts
P1, . . . , PN were assumed to be chosen – sampling with replacement was considered in [8] while sampling without
replacement was considered in [1]. Both the works [8, 1] observed a non-monotonic dependence of the success
probability on N and provided possible explanations for this phenomenon.

The actual statistical methodology used in [8, 1] is based on an earlier work by Selçuk [26] which was based
on the use of order statistics. This, in turn, was a formalisation of a ranking methodology used in the original
work of Matsui [20] which introduced linear cryptanalysis.

Our Contributions

We perform a complete and generalised analysis of success probability in linear cryptanalysis.

Complete expression for the success probability: The expression for success probability obtained by
Selçuk [26] is incomplete. Suppose S is the event that an attack is successful. In [26], Selçuk works considers
a sub-event of S to be S leading to an incomplete expression for the success probability. The later works [8, 1]
follow Selçuk’s approach and hence also obtain incomplete expressions for the success probability. In the present
work, we obtain the complete expression for the success probability.

Statistical methodology: The expression for the success probability can be derived in two different ways.
The first method is based on an order statistics approach while the second method uses statistical hypothesis
testing. We derive expressions for the success probability using both these methods. The expressions for the
success probability obtained using the two different approaches are slightly different. They turn out to be equal
if certain assumptions and approximations used by Selçuk in [26] are applied to the expression obtained from
the order statistics based approach. Some theoretical limitations of the order statistics approach was pointed
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out in [24]. In the present work, we identify two other implicit independence assumptions that need to be made
to apply this approach. In contrast, the hypothesis testing based analysis does not suffer from the theoretical
limitations and nor are any assumptions or approximations required. So, from a theoretical point of view, the
hypothesis testing based approach is more satisfying. Consequently, we take the expression obtained from the
hypothesis testing based approach to be the correct expression for the success probability.

General key randomisation hypotheses: Following the formalisation of the adjusted wrong key randomi-
sation hypothesis, we introduce the general key randomisation hypotheses. The general right key randomisation
hypothesis models pκ∗ as a random variable following N (p, s2

0) and the general wrong key randomisation hypoth-
esis models pκ,κ∗ as a random variable following N (1/2, s2

1). The expression for success probabilty is obtained
in terms of p, s0 and s1. Letting s0, s1 ↓ 0, we obtain the standard key randomisation hypothesis while setting
s1 = 2−n−2 gives the adjusted wrong key randomisation hypothesis. As a result, from the general expression for
the success probability, we are able to obtain particular expressions for the success probability under standard
key randomisation hypotheses and under the adjusted wrong key randomisation hypothesis. Further, our method
of analysis covers both the cases of sampling with and without replacements allowing us to obtain expressions for
the success probability under both these sampling strategies. We note that the standard right key randomisation
hypothesis has been extended to the adjusted right key randomisation hypothesis in the context of multiple linear
cryptanalysis [6].

Analysis of non-monotonicity of the success probability: We perform a general analysis of the depen-
dence of the success probability on N . We show that if the Fisher information about the mean p in the random
variable pκ∗ is not more than the Fisher information about the mean 1/2 in the random variable pκ,κ∗ , then the
success probability is a monotone increasing function of N . On the other hand, depending on the relative values
of s0, s1 and p, we obtain cases where the success probability indeed decreases with increasing N . By using
appropriate values of s0 and s1, we particularise the analysis to the case of adjusted wrong key randomisation
hypothesis for both sampling with and without replacements. The complete picture of the dependence of the
success probability on N is worked out in both these cases. Under a relatively mild assumption on the magnitude
of p, it can be shown that the success probability is again a monotonic increasing function of N . For the adjusted
wrong key randomisation hypothesis, the previous analyses [8, 1] of the dependence of success probability on N
did not reveal the complete picture that this described in this work.

Previous and Related Work

Linear cryptanalysis was first proposed by Matsui in [20]. Junod [15] gave a detailed analysis of Matsui’s ranking
method [20, 21]. This work introduced the notion of ordered statistics in linear cryptanalysis. The idea was further
developed by Selçuk in [26], where he used a well known asymptotic result from the theory of ordered statistic
to arrive at an expression for the success probability. Building on a work by Daemen and Rijmen [9], a paper
by Bogdanov and Tischhauser [7] introduced the adjusted wrong key randomisation hypothesis. The work [7]
considered the plaintexts to be sampled with replacement. A later work by Ashur, Beyne and Rijmen [1] analysed
success probability under adjusted wrong key randomisation hypothesis in the setting where the plaintexts are
sampled without replacements.

Analysis of attacks using multiple linear approximations has been reported in the literature [21, 18, 4, 17, 2,
16, 3, 11, 22, 13, 6, 14, 24, 25, 23]. Since this paper is concerned only with the basic setting of a single linear
approximation, we do not discuss the various aspects which arise in the context of multiple linear approximations.
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2 Linear Cryptanalysis: Background and Statistical Model

Let E : {0, 1}k × {0, 1}n 7→ {0, 1}n denote a block cipher such that for each K ∈ {0, 1}k, EK(·) ∆
= E(K, ·) is a

bijection from the set {0, 1}n to itself. Here K is called the secret key. The n-bit input to the block cipher is
called the plaintext and n-bit output of the block cipher is called the ciphertext.

Block ciphers are generally constructed by composing round functions where each round function is parametrised
by a round key. The round functions are also bijections of {0, 1}n to itself. The round keys are produced by
applying an expansion function, called the key scheduling algorithm, to the secret key K. Denote the round keys

by k(0), k(1), . . . and the round functions by R
(0)

k(0)
, R

(1)

k(1)
, . . .. For i ≥ 1, let K(i) denote the concatenation of the

first i round keys, i.e., K(i) = k(0) || · · · || k(i−1) and E
(i)

K(i) denote the composition of the first i round functions,

i.e., E
(1)

K(1) = R
(0)

k(0)
and for i ≥ 2, E

(i)

K(i) = R
(i−1)

k(i−1) ◦ · · · ◦R
(0)

k(0)
= R

(i−1)

k(i−1) ◦ E
(i−1)

k(i−1) .
A block cipher may have many rounds and for the purposes of estimating the strength of a block cipher,

a cryptanalytic attempt may target only some of these rounds. Such an attack is called a reduced round
cryptanalysis. Suppose an attack targets the first r + 1 rounds where the block cipher may possibly have more

than r + 1 rounds. For a plaintext P , we denote by C the output after r + 1 rounds, i.e., C = E
(r+1)

K(r+1)(P ), and

by B the output after r rounds, i.e., B = E
(r)

K(r)(P ) and C = R
(r)

k(r)
(B).

Linear approximation: Any block cipher cryptanalysis starts off with a detailed analysis of the structure of
the block cipher. This results in one or more relations between the plaintext P , the input to the last round B
and possibly the expanded key K(r). In case of linear cryptanalysis a linear relation of the following form is
obtained.

〈ΓP , P 〉 ⊕ 〈ΓB, B〉 = 〈ΓK ,K(r)〉. (1)

where ΓP ,ΓB ∈ {0, 1}n and ΓK(r) ∈ {0, 1}nr denote the plaintext mask, the mask to the input of the last round
and the key mask.

A relation of the form given by (1) is called a linear approximation of the block cipher. Such a linear
approximation usually holds with some probability which is taken over the random choices of the plaintext P .
Obtaining such a linear approximation and the corresponding probability is a non-trivial task and requires a lot
of ingenuity and experience. This forms the basis on which the statistical analysis of block ciphers is built.

Define
L

∆
= 〈ΓP , P 〉 ⊕ 〈ΓB, B〉. (2)

Inner key bit: Let
z = 〈ΓK ,K(r)〉.

Note that for a fixed but unknown key K(r), z is a single unknown bit. Since the key mask ΓK is known, the bit
z is determined only by the unknown but fixed K(r). Hence, there is no randomness in either of K(r) or z. The
bit z is called the inner key bit.

Target sub-key: A linear relation of the form (1) usually involves only a subset of the bits of B. In order to
obtain these bits from the ciphertext C it is required to partially decrypt C by one round. This involves a subset
of the bits of the last round key k(r). We call this subset of bits of the last round key to be the target sub-key.

The ciphertext C is obtained by encrypting P using a key K. By κ∗ we denote the value of the target sub-key
corresponding to the key K. We are interested in a key recovery attack where the goal is to find κ∗.

Let the size of the target sub-key be m. These m bits are sufficient to partially decrypt C by one round and
obtain the bits of B involved in the linear approximation. There are 2m possible choices of the target sub-key
out of which only one is correct. The purpose of the attack is to identify the correct value.
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Probability and bias of a linear approximation: Let P be a plaintext chosen uniformly at random from
{0, 1}n; C be the corresponding ciphertext; and B be the result of partially decrypting C with a choice κ of the
target sub-key. The random variable B depends on the choice κ that is used to partially invert C. Further, C
depends on the correct value κ∗ of the target sub-key and hence so does B. So, the random variable L defined
in (2) depends on κ and κ∗ and we write Lκ,κ∗ to emphasise this dependence. For κ = κ∗, we will simply write
Lκ∗ . Define

pκ,κ∗ = Pr[Lκ,κ∗ = 1], κ 6= κ∗; pκ∗ = Pr[Lκ∗ = 1]; (3)

εκ,κ∗ = pκ,κ∗ − 1/2; εκ∗ = pκ∗ − 1/2. (4)

Here εκ,κ∗ and εκ∗ are the biases corresponding to incorrect and correct choices of the target sub-key respectively.
The secret key K is a fixed quantity and so the randomness arises solely from the uniform random choice of P .

Statistical model of the attack: Let P1, . . . , PN , with N ≤ 2n, be chosen randomly following some dis-
tribution from the set {0, 1}n of all possible plaintexts. It is assumed that the adversary possesses the N
plaintext-ciphertext pairs (Pj , Cj); j = 1, 2, . . . , N where Cj = EK(Pj) for some fixed key K. Using the linear
approximation and the N plaintext-ciphertext pairs, the adversary has to find κ∗ in time faster than a brute
force search on all possible keys of the block cipher.

For each choice κ of the target sub-key it is possible for the attacker to partially decrypt each Cj by one
round to obtain Bκ,j ; j = 1, 2, . . . , N . Note that Bκ,j depends on κ even though Cj may not do so. Clearly, if
κ = κ∗, then the Cj ’s depend on κ, while if κ 6= κ∗, Cj has no relation to κ.

For κ ∈ {0, 1, . . . , 2m − 1}, z ∈ {0, 1}, j = 1, . . . , N , define

Lκ,j = 〈ΓP , Pj〉 ⊕ 〈ΓB, Bκ,j〉; (5)

Xκ,z,j = Lκ,j ⊕ z; (6)

Xκ,z = Xκ,z,1 + · · ·+Xκ,z,N . (7)

Note that Xκ,z,j ⊕Xκ,1⊕z,j = 1 and so Xκ,0 +Xκ,1 = N .
Xκ,z,j is determined by the pair (Pj , Cj), the choice κ of the target sub-key and the choice z of the inner key

bit. Since Cj depends upon K and hence upon κ∗, Xκ,z,j also depends upon κ∗ through Cj . The randomness in
Xκ,z,j arises from the randomness in Pj and also possibly from the previous choices P1, . . . , Pj−1. Xκ,z,j is binary
valued and the probability Pr[Xκ,z,j = 1] potentially depends upon the following quantities:

z : the choice of the inner key bit;
pκ∗ or pκ,κ∗ : the probabilities of linear approximation as given in (3).
j : the index determining the pair (Pj , Cj).

This models a general scenario which captures a possible dependence on the index j. The dependence on j will
be determined by the joint distribution of the plaintexts P1, . . . , PN . In the case that P1, . . . , PN are independent
and uniformly distributed, Pr[Xκ,z,j = 1] does not depend on j. On the other hand, suppose that P1, . . . , PN are
sampled without replacement. In such a scenario, Pr[Xκ,z,j = 1] does depend on j.

Test statistic: For each choice κ of the target sub-key and each choice z of the inner key bit, let Tκ,z ≡
T (Xκ,z,1, . . . , Xκ,z,N ) denote a test statistic. Then Tκ,z is a random variable whose randomness arises from the
randomness of P1, . . . , PN . Define

Tκ,z = |Wκ,z| where Wκ,z =
Xκ,z

N
− 1

2
.
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Then

Tκ,1 = |Wκ,1| =
∣∣∣∣Xκ,1

N
− 1

2

∣∣∣∣ =

∣∣∣∣N −Xκ,0

N
− 1

2

∣∣∣∣ =

∣∣∣∣12 − Xκ,0

N

∣∣∣∣ = | −Wκ,0| = Tκ,0.

So, the test statistic Tκ,z does not depend on the value of z and it is sufficient to consider z = 0.
Remark: To simplify notation, we will write Xκ,j and Xκ instead of Xκ,0,j and Xκ,0 respectively; Wκ and Tκ
instead of Wκ,0 and Tκ,0 respectively.

Using this notation, the test statistic Tκ is defined in the following manner.

Tκ = |Wκ| where Wκ =
Xκ

N
− 1

2
=
Xκ,1 + · · ·+Xκ,N

N
− 1

2
. (8)

This test statistic was considered by Matsui [20].
There are 2m choices of the target sub-key and so there are 2m random variables Tκ. The distribution of

Tκ depends on whether κ is correct or incorrect. To perform a statistical analysis of an attack, it is required to
obtain the distribution of Tκ under both correct and incorrect choices of κ. Later we consider this issue in more
details.

Success probability: An attack will produce a set (or a list) of candidate values of the target sub-key. The
attack is considered successful if the correct value of the target sub-key κ∗ is in the output set. The probability
of this event is called the success probability of the attack.

Advantage: An attack is said to have advantage a if the size of the set of candidate values of the target
sub-key is equal to 2m−a. In other words, a fraction 2−a portion of the possible 2m values of the target sub-key
is produced by the attack.

Data complexity: The number N of plaintext-ciphertext pairs required for an attack is called the data
complexity of the attack. Clearly, N depends on the success probability PS and the advantage a. One of the
goals of a statistical analysis is to be able to obtain a closed form relation between N , PS and a.

Notation on normal distributions: By N (µ, σ2) we will denote the normal distribution with mean µ and
variance σ2. The density function of N (µ, σ2) will be denoted by f(x;µ, σ2). The density function of the standard
normal will be denoted by φ(x) while the distribution function of the standard normal will be denoted by Φ(x).

3 Success Probability in Linear Cryptanalysis

As given in (8), the test statistic is Tκ = |Wκ| where Wκ = (Xκ,1 + · · ·+Xκ,N )/N − 1/2. To obtain the success
probability of the attack it is required to obtain the distributions of Tκ for the two scenarios when κ = κ∗ and
when κ 6= κ∗. This is obtained from the distributions of Wκ∗ and Wκ for κ 6= κ∗. Suppose, the following holds.

Wκ∗ ∼ N (µ0, σ
2
0), µ0 6= 0; Wκ ∼ N (0, σ2

1), κ 6= κ∗. (9)

We now consider the derivation of the success probability of linear cryptanalysis in terms of µ0, σ0 and σ1 using
both the order statistics based analysis and the hypothesis testing based analysis. Later, we will see how to
obtain µ0, σ0 and σ1. In particular, we will see that σ0 and σ1 depend on N whereas µ0 is a constant.
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3.1 Order Statistics Based Analysis

This approach is based on a ranking methodology used originally by Matsui [20] and later formalised by
Selçuk [26]. The idea is the following. There are 2m random variables Tκ corresponding to the 2m possible
values of the target sub-key. Suppose the variables are denoted as T0, . . . , T2m−1 and assume that T0 = |W0|
corresponds to the choice of the correct target sub-key κ∗, where W0 follows the distribution of Wκ∗ which is
N (µ0, σ

2
0). Let T(1), . . . , T(2m−1) be the order statistics of T1, . . . , T2m−1, i.e., T(1), . . . , T(2m−1) is the ascending

order sort of T1, . . . , T2m−1. So, the event corresponding to a successful attack with a-bit advantage is T0 > T(2mq)

where q = 1− 2−a.
Using a well known result on order statistics, the distribution of T(2mq) can be assumed to approximately

follow N (µq, σ
2
q ) where µq = σ1Φ−1(1 − 2−a−1) and σq = σ1

2φ(Φ−1(1−2−a−1))
2−(m+a)/2 (see Appendix A.1). Using

this result, PS can be approximated in the following manner.

PS = Pr[T0 > T(2mq)] = Pr[|W0| > T(2mq)]

= Pr[W0 > T(2mq)] + Pr[W0 < −T(2mq)] (10)

= Pr[W0 − T(2mq) > 0] + Pr[W0 + T(2mq) < 0]

≈ 1− Φ

−(µ0 − µq)√
σ2

0 + σ2
q

+ Φ

−(µ0 + µq)√
σ2

0 + σ2
q


= Φ

µ0 − σ1Φ−1(1− 2−a−1)√
σ2

0 + σ2
q

+ Φ

−(µ0 + σ1Φ−1(1− 2−a−1))√
σ2

0 + σ2
q


= Φ

 |µ0| − σ1Φ−1(1− 2−a−1)√
σ2

0 + σ2
q

+ Φ

−|µ0| − σ1Φ−1(1− 2−a−1)√
σ2

0 + σ2
q

 . (11)

Some criticisms: The order statistics based approach is crucially dependent on the normal approximation of
the distribution of the order statistics. In the statistics literature, this result appears in an asymptotic form.
Using the well known Berry-Esséen theorem, a concrete upper bound on the error in such approximation was
obtained in [24]. A key observation is that the order statistics result is applied to 2m random variables and
for the result to be applied even in an asymptotic context, it is necessary that 2m is sufficiently large. A close
analysis of the hypothesis of the theorem and the error bound in the concrete setting showed the following issues.
We refer to [24] for details.

m must be large: This condition arises from a convergence requirement on one of the quantities in the theorem
showing the result on order statistics. For the error in such convergence to be around 10−3, it is required
that m should be at least around 20 bits. So, if the size of the target sub-key is small, then the applicability
of the order statistics based analysis is not clear.

m− a must be large: This condition arises from the requirement that the error in the normal approximation
is small. If the error is to be around 10−3, then m− a should be at least around 20 bits. Recall that a is
the advantage of the attack. So, for attacks with high advantage, the applicability of the order statistics
based analysis is not clear.

Independence assumptions: Two assumptions are required for the analysis to be meaningful and these were
implicitly used by Selçuk in [26].
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1. The approximation of the distribution of the order statistic T(2mq) by normal is a key step in the order
statistics based approach. As mentioned above, this follows from a standard result in mathematical statis-
tics. The hypothesis of this result requires the random variables T1, T2, . . . , T2m−1 to be independent and
identically distributed. It indeed holds that T1, T2, . . . , T2m−1 are identically distributed. However, the
randomness of all of these random variables arise from the randomness of P1, . . . , PN and so these random
variables are certainly not independent. So, the independence of these random variables is a heuristic
assumption.

2. Considering W0 and T(2mq) to follow normal distributions, it is assumed that W0−T(2mq) (and W0 +T(2mq))
also follows a normal distribution. A sufficient condition for W0 − T(2mq) to follow a normal distribution
is that W0 and T(2mq) are independent. If W0 and T(2mq) are not independent, then it is not necessarily
true that W0 − T(2mq) follows a normal distribution even if W0 and T(2mq) follow normal distributions. So,
in assuming W0 − T(2mq) to follow a normal distribution, it is implicitly assumed that W0 and T(2mq) are
independent. Since the randomness of both W0 and T(2mq) arise from the randomness in P1, . . . , PN , they
are clearly not independent. As a result, the assumption that W0 − T(2mq) follows a normal distribution is
also a heuristic assumption.

In short, the above two assumptions can be summarised as assuming that the test statistics corresponding to
different choices of the sub-key are independent. We note that such assumptions are sometimes made in the
context of cryptanalysis though it is a bit surprising that the above assumptions do not seem to have been
explicitly mentioned in the literature.

In later works on multiple linear and multiple differential cryptanalysis, the order statistics based analysis
has been used in a number of papers [8, 13, 5, 6]. The above mentioned issues, i.e., both m and m − a have to
be large; and the assumption that the test statistics for different choices of the sub-key are independent, apply
to all such works.

3.2 Hypothesis Testing Based Analysis

Statistical hypothesis testing for analysing block cipher cryptanalysis was carried out in [2] in the context of
distinguishing attacks. For analysing key recovery attacks on block ciphers, hypothesis testing based approach
was used in [24] as a method for overcoming some of the theoretical limitations of the order statistics based
analysis. Subsequently, hypothesis testing based approach for analysing key recovery attacks in the context of
key dependent assumptions was performed in [6].

The idea of the hypothesis testing based approach is simple and intuitive. For each choice κ of the target
sub-key, let H0 be the null hypothesis that κ is correct and H1 be the alternative hypothesis that κ is incorrect.
The test statistic Tκ = |Wκ| is used to test H0 against H1 where the distributions of Wκ are as in (9) for both
κ = κ∗ and κ 6= κ∗. The following hypothesis test is considered.

H0 : κ is correct; versus H1 : κ is incorrect.
Decision rule (µ0 > 0): Reject H0 if Tκ ≤ t.
Decision rule (µ0 < 0): Reject H0 if Tκ ≤ t.

 (12)

Here t is a threshold whose exact value is determined depending on the desired success probability and advantage.
Such a hypothesis test gives rise to two kinds of errors: H0 is rejected when it holds which is called the Type-1
error; and H0 is accepted when it does not hold which is called the Type-2 error. If a Type-1 error occurs, then
κ = κ∗ is the correct value of the target sub-key but, the test rejects it and so the attack fails to recover the
correct value. So, the attack is successful if and only if Type-1 error does not occur. So, the success probability
PS = 1− Pr[Type-1 error].

On the other hand, for every Type-2 error, an incorrect value of κ gets labelled as a candidate key. So, the
number of times that Type-2 errors occurs is the size of the list of candidate keys.
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Theorem 1. Let κ∗ ∈ {0, 1}m. For κ ∈ {0, 1}m, let Tκ = |Wκ| be 2m random variables, where Wκ∗ ∼ N (µ0, σ
2
0),

µ0 6= 0 and Wκ ∼ N (0, σ2
1) for κ 6= κ∗. Suppose the hypothesis test given in (12) is applied to Tκ for all

κ ∈ {0, 1}m. Let PS = 1− Pr[Type-1 error]. Then

PS = Φ

(
|µ0| − σ1γ

σ0

)
+ Φ

(
−|µ0| − σ1γ

σ0

)
(13)

where γ = Φ−1
(

1− 2m−a−1

2m−1

)
and the expected number of times that Type-2 errors occurs is 2m−a.

Proof. First assume µ0 > 0. Let α = Pr[Type-1 error] and β = Pr[Type-2 error] and so PS = 1 − α. For each
κ 6= κ∗, let Zκ be a binary valued random variable which takes the value 1 if and only if a Type-2 error occurs
for κ. So, Pr[Zκ = 1] = β. The size of the list of candidate keys returned by the test is

∑
κ6=κ∗ Zκ and so the

expected size of the list of candidate keys is

E

∑
κ6=κ∗

Zκ

 =
∑
κ6=κ∗

E [Zκ] =
∑
κ6=κ∗

Pr[Zκ = 1] = (2m − 1)β. (14)

The expected number of times that Type-2 errors occurs is 2m−a. So,

β =
2m−a

2m − 1
. (15)

The Type-1 and Type-2 error probabilities are calculated as follows.

α = Pr[Type-1 error]

= Pr[Tκ ≤ t|H0 holds]

= Pr[Tκ∗ ≤ t]
= Pr[|Wκ∗ | ≤ t]
= Pr[−t ≤Wκ∗ ≤ t] (16)

= Pr

[
−t− µ0

σ0
≤ Wκ∗ − µ0

σ0
≤ t− µ0

σ0

]
= Φ

(
t− µ0

σ0

)
− Φ

(
−t− µ0

σ0

)
; (17)

β = Pr[Type-2 error]

= Pr[Tκ > t|H1 holds]

= Pr[|Wκ| > t|H1 holds]

= Pr[Wκ > t|H1 holds] + Pr[Wκ < −t|H1 holds]

= Pr

[
Wκ

σ1
>

t

σ1
|H1 holds

]
+ Pr

[
Wκ

σ1
<
−t
σ1
|H1 holds

]
= 1− Φ

(
t

σ1

)
+ Φ

(
−t
σ1

)
= 2(1− Φ(t/σ1)). (18)

Using β = 2m−a/(2m − 1) in (18), we obtain

t = σ1γ where γ = Φ−1

(
1− 2m−a−1

2m − 1

)
. (19)
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Substituting t in (17) and noting that PS = 1− α, we obtain

PS = Φ

(
µ0 − σ1γ

σ0

)
+ Φ

(
−(µ0 + σ1γ)

σ0

)
= Φ

(
|µ0| − σ1γ

σ0

)
+ Φ

(
−|µ0| − σ1γ

σ0

)
.

If µ0 < 0, then an analysis similar to the above shows that the resulting expression for the success probability is
still given by (13).

Remarks:

1. We have γ = Φ−1
(
1− 2m−a−1/(2m − 1)

)
≥ 0 if and only if 1 − 2m−a−1/(2m − 1) ≥ 1/2 if and only

if a ≥ lg(2m/(2m − 1)), where lg is logarithm to base two. We will be interested in attacks where the
advantage a is at least lg(2m/(2m − 1)) so that γ can be assumed to be non-negative.

2. The computation in (14) does not require the Zκ’s or the Tκ’s to be independent.

3. The theoretical limitations of the order statistics based analysis (namely, m and m − a are large and the
heuristic assumption that the Tκ’s are independent) are not present in the hypothesis testing based analysis.

4. Comparing (13) to (11), we find that the two expressions are equal under the following two assumptions:

(a) 2m/(2m − 1) ≈ 1: this holds for moderate values of m, but, is not valid for small values of m.

(b) σ0 � σq: this assumption was used in [26] and we provide more details later.

In the rest of the work, we will use (13) as the expression for the success probability.

4 General Key Randomisation Hypotheses

Recall the definitions of pκ,κ∗ and pκ∗ from (3). The corresponding biases are εκ,κ∗ and εκ∗ . For obtaining the
distributions of Wκ∗ and Wκ, κ 6= κ∗, it is required to hypothesise the behaviour of pκ∗ and pκ,κ∗ respectively.
The two standard key randomisation hypotheses are the following.

Standard right key randomisation hypothesis: pκ∗ = p, for some constant p for every choice of κ∗.
Standard wrong key randomisation hypothesis: pκ,κ∗ = 1/2 for every choice of κ∗ and κ 6= κ∗.

The standard wrong key randomisation hypothesis was formally considered in [12], though it was used in
earlier works. Modification of this hypothesis has been been considered in the literature. Based on an earlier
work [9] on the distribution of correlations for a uniform random permutation, the standard wrong key ran-
domisation hypothesis was relaxed in [8]. Under the standard wrong key randomisation hypothesis, the bias
εκ,κ∗ = 0. In [8], it was suggested that instead of assuming εκ,κ∗ to be 0, εκ,κ∗ should be assumed to follow a
normal distribution with expectation 0 and variance 2−n−2. This is stated more formally as follows.

Adjusted wrong key randomisation hypothesis:

For κ 6= κ∗, εκ,κ∗ ∼ N
(
0, 2−n−2

)
, or, equivalently pκ,κ∗ ∼ N

(
1/2, 2−n−2

)
.

Remarks:

1. In this hypothesis, there is no explicit dependence of the bias on either κ or κ∗.
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2. From (4), εκ,κ∗ should take values in [−1/2, 1/2]. If εκ,κ∗ is assigned a value which is outside the range
[−1/2, 1/2], then pκ,κ∗ takes a value outside the range [0, 1]. Since pκ,κ∗ is a probability, this is meaningless.
On the other hand, a random variable following a normal distribution can take any real value. So, the
above hypothesis may lead to εκ,κ∗ taking a value outside the range [−1/2, 1/2] which is not meaningful.
The reason why such a situation arises is that in [9], a discrete distribution has been approximated by a
normal distribution without adjusting for the possibility that the values may fall outside the meaningful
range. From a theoretical point of view, assuming εκ,κ∗ to follow a normal distribution cannot be formally
justified. Hence, the adjusted wrong key randomisation hypothesis must necessarily be considered to be a
heuristic assumption.

3. The variance 2−n−2 is an exponentially decreasing function of n and by Chebyshev’s inequality Pr[|pκ,κ∗ −
1/2| > 1/2] ≤ 4 · 2−n−2 = 2−n. In other words, pκ,κ∗ takes values outside [0, 1] with exponentially low
probability.

4. The formal statement of the adjusted wrong key randomisation hypothesis appears as Hypothesis 2 in [8]
and is |εκ,κ∗ | ∼ N

(
1/2, 2−n−2

)
, i.e., the condition in Hypothesis 2 of [8] is on the absolute value of εκ,κ∗

rather than on εκ,κ∗ . Since the absolute value is by definition a non-negative quantity, it is not meaningful
to model its distribution using normal. In fact, the proof of Lemma 5.9 in the thesis [27] makes use of
the hypothesis without the absolute value, i.e., it uses the hypothesis as stated above. Further, the later
work [1] also uses the hypothesis without the absolute value. So, in this work we will use the hypothesis
as stated above and without the absolute sign.

While the adjusted wrong key randomisation hypothesis was used in [8] and later in [1] both of these works used
the standard right key randomisation hypothesis. Modification of the right key randomisation hypothesis was
considered in [6] in the context of multiple/multi-dimensional linear cryptanalysis. Based on the formulation
in [6] and the adjusted wrong key randomisation hypothesis, it is possible to formulate an adjusted right key
randomisation hypothesis. Motivated by this consideration we formulate the following general key randomisation
hypotheses for both the right and the wrong key.

General right key randomisation hypothesis:

pκ∗ ∼ N
(
p, s2

0

)
where p is a fixed value and s2

0 ≤ 2−n; let ε = p− 1/2.

General wrong key randomisation hypothesis:

For κ 6= κ∗, pκ,κ∗ ∼ N
(
1/2, s2

1

)
where s2

1 ≤ 2−n.

We note the following.

1. As s0 ↓ 0, the random variable pκ∗ becomes degenerate and takes the value of the constant p. In this case,
the general right key randomisation hypothesis becomes the standard right key randomisation hypothesis.

2. As s1 ↓ 0, the random variable pκ,κ∗ becomes degenerate and takes the value 1/2. In this case, the general
wrong key randomisation hypothesis becomes the standard wrong key randomisation hypothesis.

3. For s2
1 = 2−n−2, the general wrong key randomisation hypothesis becomes the adjusted wrong key ran-

domisation hypothesis.

So, the general key randomisation hypotheses covers both the standard (right and wrong) key randomisation
hypotheses and also the adjusted wrong key randomisation hypothesis. In view of this, we perform the statistical
analysis of success probability in terms of the general key randomisation hypotheses and later deduce the special
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cases of the standard and the adjusted key randomisation hypotheses.

Remark: The issues discussed in Points 1 to 3 as part of the remarks after the adjusted wrong key randomisation
hypothesis also hold for both the general right and the general wrong key randomisation hypotheses. In particular,
we note that the requirements s2

0 ≤ 2−n and s2
1 ≤ 2−n have been imposed so that using Chebyshev’s inequality,

we obtain Pr[|pκ∗ − 1/2| > 1/2] ≤ 4s2
0 ≤ 2−n+2 and Pr[|pκ,κ∗ − 1/2| > 1/2] ≤ 4s2

1 ≤ 2−n+2 respectively. In
other words, the requirements s2

0 ≤ 2−n and s2
1 ≤ 2−n ensure that the probabilities of pκ∗ and pκ,κ∗ taking values

outside the range [0, 1] is exponentially small.

5 Analysis of Success Probability

Given the behaviour of pκ and pκ,κ∗ modelled by the two general key randomisation hypotheses, the main task is
to obtain normal approximations of the distributions of Wκ∗ and Wκ as given by (9). This will provide the values
of µ0, σ0 and σ1. Plugging in these values into the expression given by (13) provides the corresponding expression
for the success probability. The distributions of Wκ∗ and Wκ depend on whether P1, . . . , PN are chosen with or
without replacement. We separately consider both these cases.

In the general key randomisation hypotheses, we have s2
0, s

2
1 ≤ 2−n. Let θ2

0 = s2
02n/2 ≤ 2−n/2. By Chebyshev’s

inequality,

Pr[|pκ∗ − p| > θ0] ≤ s2
0/θ

2
0 = 2−n/2. (20)

So, with exponentially low probability, pκ∗ takes values outside the range [p− θ0, p+ θ0]. For p ∈ [p− θ0, p+ θ0]
and θ = p− 1/2, we have ε− θ0 ≤ θ ≤ ε+ θ0 and so

p(1− p) = 1/4− θ2 ≥ 1/4− (ε+ θ0)2 ≈ 1/4 (21)

under the assumption that (ε+ θ0)2 is negligible.
Similarly, let ϑ2

1 = s2
12n/2 ≤ 2−n/2 and as above, we have by Chebyshev’s inequality

Pr[|pκ,κ∗ − 1/2| > ϑ1] ≤ s2
1/ϑ

2
1 = 2−n/2. (22)

Further, let ϑ = p− 1/2 so that for p ∈ [1/2− ϑ1, 1/2 + ϑ1],

p(1− p) = 1/4− ϑ2 ≥ 1/4− ϑ2
1 = 1/4− s2

12n/2 ≥ 1/4− 2−n/2 ≈ 1/4 (23)

under the assumption that 2−n/2 is negligible.

5.1 Distributions of Wκ∗ and Wκ, κ 6= κ∗ under Uniform Random Sampling with Replace-
ment

In this case, P1, . . . , PN are chosen under uniform random sampling with replacement so that P1, . . . , PN are
assumed to be independent and uniformly distributed over {0, 1}n.

First consider Wκ∗ whose distribution is determined from the distribution of pκ∗ . Recall that Xκ∗ = Xκ∗,1 +
· · · + Xκ∗,N . Since P1, . . . , PN are independent, the random variables Xκ∗,1, . . . , Xκ∗,N are also independent.
Under the general right key randomisation assumption, pκ∗ is modelled as a random variable following N (p, s2

0)
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and so the density function of pκ∗ is f(p; p, s2
0). The distribution function of Xκ∗ is approximated as follows:

Pr[Xκ∗ ≤ x]

=
∑
k≤x

Pr[Xκ∗ = k]

≈
∑
k≤x

∫ ∞
−∞

(
N

k

)
pk(1− p)N−kf(p; p, s2

0)dp

=

∫ ∞
−∞

∑
k≤x

(
N

k

)
pk(1− p)N−k

 f(p; p, s2
0)dp. (24)

The sum within the integral is the distribution function of the binomial distribution and can be approximated
by N (Np, Np(1 − p)). In this approximation, the variance of the normal also depends on p which makes it
difficult to proceed with further analysis. Using (21), it is possible to approximate p(1 − p)) as 1/4. This
approximation, however, is valid only for p ∈ [p−θ0, p+θ0] and under the assumption that (ε+θ0)2 is negligible.
In particular, the approximation is not valid for values of p close to 0 or 1. The probability that p is not in
[p − θ0, p + θ0] is exponentially small as shown in (20). So, we break up the integral in (24) in a manner such
that the approximation p(1− p)) ≈ 1/4 can be made in the range p− θ0 to p+ θ0 and it is possible to show that
the contribution to (24) for p outside this range is negligible.

Pr[Xκ∗ ≤ x]

=

∫ p+θ0

p−θ0

∑
k≤x

(
N

k

)
pk(1− p)N−k

 f(p; p, s2
0)dp

+

∫ p−θ0

−∞

∑
k≤x

(
N

k

)
pk(1− p)N−k

 f(p; p, s2
0)dp +

∫ ∞
p+θ0

∑
k≤x

(
N

k

)
pk(1− p)N−k

 f(p; p, s2
0)dp (25)

≤
∫ p+θ0

p−θ0

∑
k≤x

(
N

k

)
pk(1− p)N−k

 f(p; p, s2
0)dp +

∫ p−θ0

−∞
f(p; p, s2

0)dp +

∫ ∞
p+θ0

f(p; p, s2
0)dp

=

∫ p+θ0

p−θ0

∑
k≤x

(
N

k

)
pk(1− p)N−k

 f(p; p, s2
0)dp + Pr[|pκ∗ − p| > θ0]

≤
∫ p+θ0

p−θ0

∑
k≤x

(
N

k

)
pk(1− p)N−k

 f(p; p, s2
0)dp + 2−n/2 (from (20))

≈
∫ p+θ0

p−θ0

∑
k≤x

(
N

k

)
pk(1− p)N−k

 f(p; p, s2
0)dp. (26)

The sum inside the integral is approximated by the distribution function of N (Np, Np(1 − p)). The range of
the integration over p is from p − θ0 to p + θ0. Using (21), it follows that for p ∈ [p − θ0, p + θ0] the normal
distribution N (Np, Np(1− p)) can be approximated as N (Np, N/4) (i.e., p(1− p) ≈ 1/4) under the assumption
that (ε+ θ0)2 is negligible. Note that the above analysis has been done to ensure that the range of p is such that
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this approximation is meaningful.

Pr[Xκ∗ ≤ x] ≈
∫ p+θ0

p−θ0

(∫ x

−∞
f(x;Np, N/4)dx

)
f(p; p, s2

0)dp.

≤
∫ ∞
−∞

(∫ x

−∞
f(x;Np, N/4)dx

)
f(p; p, s2

0)dp. (27)

=

∫ x

−∞

∫ ∞
−∞

(
f(x;Np, N/4)f(p; p, s2

0)dp
)
dx (28)

=

∫ x

−∞
f(x;Np, s2

0N
2 +N/4) dx. (29)

The last equality follows from Proposition 1 in Section A.2. Comparing (24) and (27), it may appear that a
roundabout route has been taken to essentially replace the sum inside the integral by a normal approximation.
On the other hand, without taking this route, we do not see how to justify that the variance of this normal
approximation is approximately N/4.

From (29), the distribution of Xκ∗ is approximately N (Np, s2
0N

2 + N/4). Consequently, the distribution of
Wκ∗ = Xκ∗/N − 1/2 is approximately given as follows:

Wκ∗ ∼ N
(
ε, s2

0 +
1

4N

)
. (30)

For Wκ with κ 6= κ∗, we need to consider the general wrong key randomisation hypothesis where pκ,κ∗ is
modelled as a random variable following N (1/2, s2

1). A similar analysis as above is carried out where instead
of (20) and (21), the relations (22) and (23) respectively are used. In particular, for p ∈ [1/2 − ϑ1, 1/2 + ϑ1],
it is required to approximate N (Np, Np(1 − p)) by N (N/2, N/4), i.e., p(1 − p) ≈ 1/4. The validity of this
approximation for p ∈ [1/2− ϑ1, 1/2 + ϑ1] follows from (23) where s2

12n/2 is considered to be negligible. Again,
we note that the approximation p(1− p) ≈ 1/4 is not valid for values of p near to 0 or 1. The analysis yields the
following approximation:

Wκ ∼ N
(

0, s2
1 +

1

4N

)
, κ 6= κ∗. (31)

Remark: For the adjusted wrong key randomisation hypothesis, i.e., with s2
1 = 2−n−2, in [8] the distribution of

Wκ for κ 6= κ∗ was stated without proof to be N
(
0, 1

2n+2 + 1
4N

)
. Lemma 5.9 in the thesis [27] also stated this

result and as proof mentioned N (0, 1
2n+2 ) +N (0, 1

4N ) = N (0, 1
2n+2 + 1

4N ). This refers to the fact that the sum of
two independent normal distributed random variables is also normal distributed. While this fact is well known,
it is not relevant to the present analysis.

5.2 Distributions of Wκ∗ and Wκ, κ 6= κ∗ under Uniform Random Sampling without Re-
placement

In this scenario, the plaintexts P1, . . . , PN are chosen according to uniform random sampling without replacement.
As a result, P1, . . . , PN are no longer independent and correspondingly neither areXκ,1, . . . , Xκ,N . So, the analysis
in the case for sampling with replacement needs to be modified.

We first consider the distribution of Wκ∗ in the scenario where pκ∗ is a random variable. A fraction pκ∗ of
the 2n possible plaintexts P satisfies the condition 〈ΓP , P 〉 ⊕ 〈ΓB, B〉 = 1. Let us say that a plaintext P is ‘red’
if the condition 〈ΓP , P 〉 ⊕ 〈ΓB, B〉 = 1 holds for P ; otherwise, we say that P is ‘white’. So there are bpκ∗2nc red
plaintexts in {0, 1}n and the other plaintexts are white. For k ∈ {0, . . . , N}, the event Xκ∗ = k is the event of
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picking k red plaintexts in N trials from an urn containing 2n plaintexts out of which bpκ∗2nc are red and the
rest are white. So,

Pr[Xκ∗ = k] =

(bpκ∗2nc
k

)(2n−bpκ∗2nc
N−k

)(
2n

N

) . (32)

Under the general right key randomisation hypothesis it is assumed that pκ∗ follows N (p, s2
0) so that the

density function of pκ∗ is taken to be f(p; p, s2
0). Then

Pr[Xκ∗ ≤ x] =
∑
k≤x

Pr[Xκ = k]

≈
∑
k≤x

∫ ∞
−∞

(bp2nc
k

)(2n−bp2nc
N−k

)(
2n

N

) f(p; p, s2
0)dp

=

∫ ∞
−∞

∑
k≤x

(bp2nc
k

)(2n−bp2nc
N−k

)(
2n

N

)
 f(p; p, s2

0)dp.

An analysis along the lines of (25) to (26) using (20) shows that

Pr[Xκ∗ ≤ x] ≈
∫ p+θ0

p−θ0

∑
k≤x

(bp2nc
k

)(2n−bp2nc
N−k

)(
2n

N

)
 f(p; p, s2

0)dp.

The sum within the integral can be seen to be the distribution function of the hypergeometric distribution
Hypergeometric(N, 2n, bp2nc). If N � 2n, then the hypergeometric distribution approximately follows Bin(N, p);
on the other hand, if N/2n = t ∈ (0, 1), then the hypergeometric distribution approximately follows N (pN,N(1−
t)p(1− p)) (see Appendix A.3) which using t = N/2n is equal to N (pN,N(1−N/2n)p(1− p)).

For p ∈ [p − θ0, p + θ0], from (21) the normal distribution N (pN,N(1 −N/2n)p(1 − p)) is approximated as
N (Np, N(1−N/2n)/4) under the assumption that (ε+θ0)2 is negligible. Again, we note that the approximation
holds in the mentioned range of p and it is not valid for values of p close to 0 or 1.

Pr[Xκ∗ ≤ x] ≈
∫ p+θ0

p−θ0

(∫ x

−∞
f(x;Np, N(1−N/2n)/4) dx

)
f(p; p, s2

0) dp

≤
∫ ∞
−∞

(∫ x

−∞
f(x;Np, N(1−N/2n)/4) dx

)
f(p; p, s2

0) dp

=

∫ x

−∞

(∫ ∞
−∞

f(x;Np, N(1−N/2n)/4)f(p; p, s2
0) dp

)
dx

=

∫ x

−∞
f(x;Np, s2

0N
2 +N(1−N/2n)/4)dx.

The last equality follows from Proposition 1 in Section A.2. So, Xκ∗ approximately follows N (Np, s2
0N

2 +N(1−
N/2n)/4) and since Wκ∗ = Xκ∗/N − 1/2 we have that the distribution of Wκ∗ is approximately given as follows:

Wκ∗ ∼ N
(
ε, s2

0 +
1−N/2n

4N

)
. (33)

For Wκ with κ 6= κ∗, we need to consider the general wrong key randomisation hypothesis where pκ,κ∗ is
modelled as a random variable following N (1/2, s2

1). In this case, it is required to use (22) and (23) instead
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of (20) and (21) respectively. In particular, as in the case of sampling with replacement, we note that for
p ∈ [1/2− ϑ1, 1/2 + ϑ1], it is required to approximate N (Np, Np(1 − p)) by N (N/2, N/4), i.e., p(1 − p) ≈ 1/4.
The validity of this follows from (23) and the approximation is not valid for values of p near to 0 or 1. With
these approximations, the resulting analysis shows the following approximate distribution:

Wκ ∼ N
(

0, s2
1 +

1−N/2n

4N

)
, κ 6= κ∗. (34)

Remark: In [1], for the adjusted wrong key randomisation hypothesis, i.e., with s2
1 = 2−n−2, the distribution of

Wκ for κ 6= κ∗ was stated to be N
(
0, 1

4N

)
. We note the following issues.

1. The supporting argument in [1] was given to be the fact that if two random variables X and Y are such
that X ∼ N (aY, σ2

1) and Y ∼ N (µ, σ2
2), then X ∼ N (aµ, σ2

1 + a2σ2
2) (see Proposition 2 in the appendix for

a proof). This argument, however, is not complete. The distribution function of Xκ for κ 6= κ∗ is

Pr[Xκ∗ ≤ x] =
∑
k≤x

Pr[Xκ = k] =
∑
k≤x

∫ ∞
−∞

(
2n−1

k

)(
2n−2n−1

N−k
)(

2n

N

) f(p; 1/2, s2
1)dp. (35)

After interchanging the order of the sum and the integration, one can apply the normal approximation of
the hypergeometric distribution. It is not justified to directly start with the normal approximation of the
hypergeometric distribution as has been done in [1].

2. The issue is more subtle than simply a question of interchanging the order of the sum and the integral. After
applying the normal approximation of the hypergeometric distribution one ends up with N (N/2, N(1 −
N/2n)p(1 − p)) which is then approximated as N (N/2, N(1 − N/2n)/4). This requires assuming that
(p − 1/2)2 is negligible. Clearly, this assumption is not valid for values of p close to 0 or 1. On the other
hand, the approximation is justified for p ∈ [1/2−ϑ1, 1/2+ϑ1] under the assumption that s2

12n/2 = 2−2−n/2

is negligible (see (23)). Also, the probability that p takes values outside [1/2−ϑ1, 1/2+ϑ1] is exponentially
low as shown in (22). So, it is required to argue that the integral in (35) is from 1/2 − ϑ1 to 1/2 + ϑ1

and the contribution of the integral outside this range is negligible. This can be done in a manner which
is similar to that done in Steps (25) to (26). In [1], the assumption that (p − 1/2)2 is negligible has been
made for all values of p which is not justified.

5.3 Success Probability under General Key Randomisation Hypotheses

The distributions of Wκ∗ and Wκ for κ 6= κ∗ are respectively given by (30) and (31) for the case of sampling with
replacement and are given by (33) and (34) for the case of sampling without replacement. These expressions can
be compactly expressed in the following form:

Wκ∗ ∼ N (ε, s2
0 + σ2); Wκ ∼ N (0, s2

1 + σ2), for κ 6= κ∗; (36)

where

σ2 =

{ 1
4N for sampling with replacement;
1−N/2n

4N for sampling without replacement.
(37)

Substituting σ2
0 = s2

0 + σ2 and σ2
1 = s2

1 + σ2 in Theorem 1, we obtain the following result.
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Theorem 2. Let κ∗ ∈ {0, 1}m. For κ ∈ {0, 1}m, let Tκ = |Wκ| be 2m random variables, where Wκ∗ ∼ N (µ0, s
2
0 +

σ2), µ0 6= 0 and Wκ ∼ N (0, s2
1 + σ2) for κ 6= κ∗. Suppose the hypothesis test given in (12) is applied to Tκ for

all κ ∈ {0, 1}m. Let PS = 1− Pr[Type-1 error]. Then

PS = Φ

(
|ε| −

√
s2

1 + σ2γ√
s2

0 + σ2

)
+ Φ

(
−|ε| −

√
s2

1 + σ2γ√
s2

0 + σ2

)
(38)

where γ = Φ−1
(

1− 2m−a−1

2m−1

)
and the expected number of times that Type-2 errors occurs is 2m−a.

Let P
(wr)
S denote the success probability when sampling with replacement is used and let P

(wor)
S denote

the success probability when sampling without replacement is used. Using the corresponding expressions for σ

from (37) in (38) we obtain the following expressions for P
(wr)
S and P

(wor)
S .

P
(wr)
S = Φ

(
2
√
N |ε| −

√
1 + 4Ns2

1γ√
1 + 4Ns2

0

)
+ Φ

(
−2
√
N |ε| −

√
1 + 4Ns2

1γ√
1 + 4Ns2

0

)
; (39)

P
(wor)
S = Φ

(
2
√
N |ε| −

√
4Ns2

1 + (1−N/2n)γ√
4Ns2

0 + (1−N/2n)

)
+ Φ

(
−2
√
N |ε| −

√
4Ns2

1 + (1−N/2n)γ√
4Ns2

0 + (1−N/2n)

)
. (40)

Remarks:

1. If N � 2n, then P
(wor)
S ≈ P (wr)

S . So, the expression for P
(wor)
S given by (40) becomes useful only when the

fraction N/2n is non-negligible.

2. In the case of sampling with replacement, due to the birthday paradox, having N to be greater than 2n/2

is not really useful, since repetitions will begin to occur.

5.4 Success Probability Under Standard Key Randomisation Hypotheses

Let P
(wr,std)
S and P

(wor,std)
S be the success probabilities for standard key randomisation hypotheses corresponding

to the situations where plaintexts are chosen with and without replacement respectively. As discussed in Section 4,
the standard key randomisation hypotheses is obtained from the general key randomisation hypothesis by letting
s0 ↓ 0 and s1 ↓ 0. Using these conditions in (39) and (40) lead to the following expressions for the success
probabilities in the two cases of sampling with and without replacement.

P
(wr,std)
S = Φ

(
2
√
N |ε| − γ

)
+ Φ

(
−2
√
N |ε| − γ

)
. (41)

P
(wor,std)
S = Φ

(
2
√
N√

1−N/2n
|ε| − γ

)
+ Φ

(
− 2

√
N√

1−N/2n
|ε| − γ

)
. (42)

Success probability in [26]: Selçuk [26] had obtained an expression for the success probability under the
standard key randomisation hypotheses and under the assumption that P1, . . . , PN are chosen uniformly with

replacements. The expression for P
(wr,std)
S given by (41) was not obtained in [26]. This is due to the following

reasons.

1. For analysing the success probability, Selçuk [26] employed the order statistics based approach. As discussed
in Section 3.1, in this approach the T ’s are written as T0, . . . , T2m−1 and it is assumed that T0 corresponds to
the right key. With this set-up, an attack with a-bit advantage is successful, if T0 > T(2mq) where q = 1−2−a.
Selçuk [26] insteads considers success to be the event W0 > T(2mq) and the condition W0/µ0 > 0. Since
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the T ’s can take only non-negative values, it follows that T(2mq) ≥ 0 and so the event W0 > T(2mq) implies
W0 > 0 and so µ0 > 0. Conversely, if µ0 < 0, then for the condition W0/µ0 > 0 to hold we must have
W0 < 0 in which case the event W0 > T(2mq) is an impossible event. So, the condition W0 > T(2mq)

subsumes the condition W0/µ0 > 0 for µ0 > 0 and has probability 0 for µ0 < 0. No justification is provided
in [26] for considering success to be W0 > T(2mq) instead of T0 > T(2mq). From (10) we see that the event
W0 > T(2mq) is a sub-event of T0 > T(2mq) which is the event that the attack is successful.

2. It is assumed that σ0 � σq. This is justified in [26] by providing numerical values for a in the range
8 ≤ a ≤ 48 and it is mentioned that the assumption especially holds for success probability 0.8 or more.

Under the above two assumptions, the expression for success probability obtained in [26] is the following.

PS ≈ Φ
(

2
√
N |ε| − Φ−1(1− 2−a−1)

)
. (43)

Assume that m is large so that 2m − 1 ≈ 2m and so γ ≈ Φ−1(1 − 2−a−1). Then the right hand side of (43)
becomes equal to the first term of (41). This shows that the expression for the success probability obtained
in [26] is incomplete.

To the best of our knowledge, no prior work has analysed the success probability of linear cryptanalysis
with the standard key randomisation hypotheses and under the condition where P1, . . . , PN are chosen uniformly

without replacement. So, the expression for P
(wor,std)
S given by (42) is the first such result.

5.5 Success Probability Under Adjusted Wrong Key Randomisation Hypothesis

Let P
(wr,adj)
S and P

(wor,adj)
S be the success probabilities for adjusted wrong key randomisation hypothesis (and

standard right key randomisation hypothesis) corresponding to the situations where plaintexts are chosen with
and without replacement respectively.

Setting s2
1 = 2−n−2 converts the general wrong key randomisation hypothesis to the adjusted wrong key

randomisation hypothesis. Also, we let s0 ↓ 0, so that the general right key randomisation hypothesis simplifies
to the standard right key randomisation hypothesis. Using the conditions for s0 and s1 in (39) and (40) provides
the following expressions for the success probabilities in the two cases of sampling with and without replacement.

P
(wr,adj)
S = Φ

(
2
√
N |ε| −

√
1 +N/2nγ

)
+ Φ

(
−2
√
N |ε| −

√
1 +N/2nγ

)
. (44)

P
(wor,adj)
S = Φ

(
2
√
N |ε| − γ√

1−N/2n

)
+ Φ

(
−2
√
N |ε| − γ√

1−N/2n

)
. (45)

Expressions for the success probability with the adjusted wrong key randomisation hypothesis and the standard
right key randomisation hypothesis were obtained in [8] and [1]. Both the works followed the order statistics
approach as used by Selçuk. The work [8] considered the setting of uniform random choice of P1, . . . , PN with
replacement whereas [1] considered the setting of uniform random choice of P1, . . . , PN without replacement.
Under the approximation 2m ≈ 2m− 1, the expressions obtained in [8] and [1] are equal to the first terms of (44)
and (45) respectively. The reason why the complete expressions were not obtained in [8, 1] is similar to the

reason why Selçuk was not able to obtain the complete expression for P
(wr,std)
S .

The expressions for both P
(wr,adj)
S and P

(wor,adj)
S can be seen to be functions of |ε|, N and γ. Since γ itself is

a function of the advantage a and the size of the target sub-key m, it follows that both P
(wr,adj)
S and P

(wor,adj)
S

are functions of |ε|, N , a and m. None of these quantities are random variables, so neither are P
(wr,adj)
S and

P
(wor,adj)
S random variables. Consequently, it is not meaningful to talk about the average value of PS or about

the probability that PS is monotonous as has been done in [1].
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6 Understanding Non-Monotonic Behaviour

As in Section 3, let Wκ∗ ∼ N (µ0, σ
2
0) and Wκ ∼ N (0, σ2

1) for κ 6= κ∗. Assume µ0 > 0. From (17), we obtain the
expression for α, the probability of Type-1 error, to be α = 1 − PS = Φ((t − µ0)/σ0) + Φ((−t − µ0)/σ0). The
first term arises from the upper bound on Wκ∗ given in (16), i.e.,

Pr[Wκ∗ ≤ t] = Φ((t− µ0)/σ0). (46)

From (19), t = σ1γ, where γ is a constant. Let π = Pr[Wκ∗ ≤ t] and then 1−π is the corresponding contribution
to PS . Note that π is the area under the curve of the density function of Wκ∗ from −∞ to t.

Consider the setting of general key randomisation hypothesis where P1, . . . , PN are chosen with replacement.
From (30) and (31), we have µ0 = ε, σ2

0 = s2
0 + 1

4N and σ2
1 = s2

1 + 1
4N . Since s0 and s1 are constants, σ0 and σ1

are both inversely proportional to N . So, as N increases the normal curve for Wκ∗ becomes more concentrated
around the mean ε. This is shown in Figures 1, 2 and 3. Also, since γ is a constant, t = σ1γ is also inversely
proportional to N . So, π is a function of N . One may expect π to be a monotonic decreasing function of N (and
1− π to be a monotonic increasing function of N), but, this does not necessarily hold as we explain below.

Let N1 < N2. The corresponding density functions for Wκ∗ are f(x; ε, s2
0 + 1/(4N1)) and f(x; ε, s2

0 + 1/(4N2)).
So, there is an x0 such that the following hold:

• f(x; ε, s2
0 + 1/(4N1)) ≥ f(x; ε, s2

0 + 1/(4N2)), for x ≥ x0;
• f(x; ε, s2

0 + 1/(4N1)) < f(x; ε, s2
0 + 1/(4N2)), for x < x0.

The point x0 is shown in Figures 1, 2 and 3.
Let t1 = (s2

1 + 1/(4N1))γ and t2 = (s2
1 + 1/(4N2))γ and so t2 < t1. Let π1 and π2 be the values of π

corresponding to N1 and N2. There are two possibilities.

t2 ≤ x0: In this case, we have either t2 < t1 ≤ x0 or t2 ≤ x0 < t1. From Figures 1 and 2, in both cases, it
can be noted that the area under the curve corresponding to N1 is more than the area under the curve
corresponding to N2. So, π1 > π2. In other words, increasing N leads to π going down and correspondingly
1−π going up. As a result, in this case, the first term in the expression for success probability given by (17)
increases with N .

t2 > x0: In this case, we have x0 < t2 < t1. From Figure 3, it is no longer clear that the area under the curve
corresponding to N1 is more than the area under the curve corresponding to N2. So, it cannot be definitely
said that π1 is more than π2 and so the 1− π does not necessarily go up. As a result, it can no longer be
said that the first term in the expression for success probability given by (17) increases with N .

Note that the above explanation is purely statistical in nature. It is entirely based upon the expressions for the
variances of the two normal distributions.

In the above discussion, we have tried to explain the possible non-monotonic behaviour of the probability of
the event Pr[Wκ∗ ≤ t] for the case of sampling with replacement. Considering this specific case makes it easy to
see the dependence of the variances on N in determining possible non-monotonicity. The explanation extends
to the complete expression for the success probability as well as to the case of sampling without replacement.

Explanations for non-monotonic behaviour have been provided in [8, 1]. In [8], non-monotonicity has essen-
tially been attributed to the strategy of sampling with replacement leading to duplicates. The later work [1],
observed non-monotonicity even for the strategy of sampling without replacement and so the explanation based
on the occurrence of duplicates could not be applied. Instead, [1] provides an explanation for non-monotonicity
for both sampling with and without replacement based on the ranking strategy used in the order statistics based
approach. As we have seen, expressions for success probability can be obtained without using the order statistics
based approach. So, an explanation of non-monotonicity based on order statistics based approach is not ade-
quate. Instead, as we have tried to explain above, the phenomenon is better understood by considering that the
variances of the two normal distributions in question are monotone decreasing with N .
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Figure 1: Case t2 ≤ x0 < t1.

(0, 0) t2 x0t1
x

y

Figure 2: Case t2 < t1 < x0.

(0, 0) t2x0 t1
x

y

Figure 3: Case x0 < t2 < t1.
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6.1 Dependence of PS on N

Consider the general expression for the success probability PS as given by (38). The subsequent expressions for
success probability with/without replacement and under standard/adjusted key randomisation hypotheses are
all obtained as special cases of (38). In (38), the quantities s0, s1 and γ are constants which are independent of
N and only σ depends on N as shown in (37). Further, from (37), it is clear that σ is a decreasing function of
N for both the cases of with and without replacements.

We analyse the behaviour of PS as a function of N and identify the situations where PS is a monotonic
increasing function of N .

Theorem 3. Consider PS to be given by (38) where s0, s1 and γ are positive and independent of N while σ > 0
is a monotone decreasing function of N .

1. Suppose s0 ≥ s1. Then PS is an increasing function of N for all N > 0.

2. Suppose s0 < s1 and
(
s2

1 − s2
0

)
γ ≥ |ε|

√
σ2 + s2

1. Then PS is a decreasing function of N .

3. Suppose s0 < s1,
(
s2

1 − s2
0

)
γ < |ε|

√
σ2 + s2

1 and δ =
(s21−s20)γ
|ε|
√
σ2+s21

is such that δ3 and higher powers of δ can

be ignored. Then PS is an increasing function of N if and only if σ2
(
(s2

1 − s2
0)− ε2

)
< ε2s2

1 − (s2
1 − s2

0)s2
0.

Proof. We proceed by taking derivatives with respect to N . Since σ is a decreasing function of N , dσ
dN < 0.

dPS
dN

= φ

(
|ε| −

√
σ2 + s2

1γ√
σ2 + s2

0

)− γσ dσ
dN√

σ2 + s2
1

· 1√
σ2 + s2

0

+

(
|ε| −

√
σ2 + s2

1γ

)
·

− σ dσ
dN√(

σ2 + s2
0

)3
−

φ

(
−|ε|+

√
σ2 + s2

1γ√
σ2 + s2

0

) γσ dσ
dN√

σ2 + s2
1

· 1√
σ2 + s2

0

+

(
|ε|+

√
σ2 + s2

1γ

)
·

− σ dσ
dN√(

σ2 + s2
0

)3


=
σf1(σ) dσdN√

σ2 + s2
1

√(
σ2 + s2

0

)3 , where

f1(σ) = φ

(
|ε| −

√
σ2 + s2

1γ√
σ2 + s2

0

)(
−γ
(
σ2 + s2

0

)
−
(
|ε|
√
σ2 + s2

1 −
(
σ2 + s2

1

)
γ

))

−φ

(
−|ε|+

√
σ2 + s2

1γ√
σ2 + s2

0

)(
γ
(
σ2 + s2

0

)
−
(
|ε|
√
σ2 + s2

1 +
(
σ2 + s2

1

)
γ

))
.

Using the definition of the standard normal density function, we have

f1(σ) =
e

|ε|+
√
σ2+s21γ

2(σ2+s20)

√
2π

− (σ2 + s2
0

)
γ

e 2|ε|γ
√
σ2+s21

σ2+s20 + 1

− |ε|√σ2 + s2
1

e 2|ε|γ
√
σ2+s21

σ2+s20 − 1

+

(
σ2 + s2

1

)
γ

e 2|ε|γ
√
σ2+s21

σ2+s20 + 1


=

−1√
2π

exp

(
|ε|+

√
σ2 + s2

1γ

2(σ2 + s2
0)

)
f2(σ), where

f2(σ) =
(
s2

0 − s2
1

)
γ

e 2|ε|γ
√
σ2+s21

σ2+s20 + 1

+ |ε|
√
σ2 + s2

1

e 2|ε|γ
√
σ2+s21

σ2+s20 − 1

 .
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Since dσ/dN < 0 we have that dPS/dN > 0 if and only if f1(σ) < 0 if and only if f2(σ) > 0. If s0 ≥ s1, then
f2(σ) > 0 and so in this case we have dPS/dN > 0 which implies that PS is an increasing function of N . This
proves the first point.

Now consider the case s0 < s1. We write

f2(σ) = −
(
s2

1 − s2
0

)
γ

e 2|ε|γ
√
σ2+s21

σ2+s20 + 1

+ |ε|
√
σ2 + s2

1

e 2|ε|γ
√
σ2+s21

σ2+s20 − 1

 .

= e

2|ε|γ
√
σ2+s21

σ2+s20

(
|ε|
√
σ2 + s2

1 −
(
s2

1 − s2
0

)
γ

)
− |ε|

√
σ2 + s2

1 −
(
s2

1 − s2
0

)
γ.

If
(
s2

1 − s2
0

)
γ ≥ |ε|

√
σ2 + s2

1, then f2(σ) < 0 and so dPS/dN < 0 which implies that PS is a decreasing function
of N . This proves the second point.

So, suppose that s0 < s1 and
(
s2

1 − s2
0

)
γ < |ε|

√
σ2 + s2

1 both hold. By the condition of this case, we have
0 < δ < 1. Also, we have the assumption that δ is small enough such that δ3 and higher powers of δ can be
ignored. Then f2(σ) > 0 if and only if

2|ε|γ
√
σ2 + s2

1

σ2 + s2
0

> ln

(
1 + δ

1− δ

)
≈ 2δ = 2

(
s2

1 − s2
0

)
γ

|ε|
√
σ2 + s2

1

.

Cancelling 2γ on both sides and rearranging the terms shows the third point.

Fisher information: Suppose a random variable Y follows a distribution whose density is given by a function
g(y; θ1, θ2, . . .), where θ1, θ2, . . . are the finitely many parameters specifying the density function. A relevant
question is how much information does the random variable Y carry about one particular parameter θi. Fisher
information is a well known measure in statistics for quantifying this information. The Fisher information about
a parameter θ ∈ {θ1, θ2, . . .} carried in the random variable Y is defined to be

IY (θ) = Eθ

[(
∂

∂θ
ln g(Y ; θ1, θ2, . . .)

)2
]
. (47)

If Y ∼ N (µ, σ2), then IY (µ) = σ−2. In other words, the information contained in the random variable Y is
inversely proportional to σ2. So, as the variance increases, the information about the mean contained in the
random variable Y decreases.

We view the first point of Theorem 3 in the context of Fisher information. Recall that pκ∗ is a random variable
following N (p, s2

0) and pκ,κ∗ is a random variable following N (1/2, s2
1). So, Ipκ∗ (p) = s−2

0 and Ipκ,κ∗ (1/2) = s−2
1 .

From the first point of Theorem 3 we have that if s0 > s1, then PS is an increasing function of N for all N > 0.
Put in terms of Fisher information, this is equivalent to saying that if Ipκ,κ∗ (1/2) ≥ Ipκ∗ (p), then PS is an
increasing function of N . More explicitly, if the information about the mean contained in pκ∗ is not more than
the information about the mean contained in pκ,κ∗ , then increasing N increases the success probability. Viewed
differently, if the variability of pκ∗ is at least as much as the variability of pκ,κ∗ , then the chances of the attack
being successful increases as the number of observations increases.

Applying Theorem 3 to the case of standard key randomisation hypothesis, we have s0 ↓ 0 and s1 ↓ 0. So,

by the first point of Theorem 3, it follows that both P
(wr,std)
S and P

(wor,std)
S are increasing functions of N for all

N > 0.

6.2 Adjusted Wrong Key Randomisation Hypothesis

In this case s2
1 = 2−n−2. Also, assuming the standard right key randomisation hypothesis (as in [8, 1]), s0 ↓ 0.

So, Points 2 and 3 of Theorem 3 apply. This case is divided into two subcases.
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Sampling with replacement: In this case, σ2 = 1/(4N). Let N
(wr)
0 = (s2

1 − ε2)/(4ε2s2
1) and note that

N
(wr)
0 > 0 if and only if s1 < |ε|.

1. Suppose s1γ > |ε| so that s4
1γ

2 − ε2s2
1 > 0.

(a) By Point 2 of Theorem 3, for N ≥ ε2/(4(s4
1γ

2 − ε2s2
1)), P

(wr,adj)
S is a decreasing function of N .

(b) By Point 3 of Theorem 3, for (s2
1 − ε2)/(4ε2s2

1) < N < ε2/(4(s4
1γ

2 − ε2s2
1)), P

(wr,adj)
S is an increasing

function of N and for N < (s2
1 − ε2)/(4ε2s2

1), P
(wr,adj)
S is a decreasing function of N .

Recall that N is the number of plaintext-ciphertext pairs and hence is positive and at most 2n. Let

N
(wr)
1 = ε2/(4(s4

1γ
2 − ε2s2

1)). We have s2
1 = 2−n−2 and so, N

(wr)
1 < 2n if and only if |ε| < (s1γ)/

√
2. For

sampling with replacement, it is more meaningful to consider 2n/2 to be the upper bound for N , since

beyond a sample size of 2n/2 there will be too many repetitions in the sample. We have N
(wr)
1 < 2n/2 if

and only if |ε| < s1γ/
√

1 + (2s1)−1. This means that if |ε| < (s1γ)/
√

2, P
(wr,adj)
S is a decreasing function

of N for N
(wr)
1 ≤ N ≤ 2n. So, for |ε| < s1γ/

√
1 + (2s1)−1, P

(wr,adj)
S is a decreasing function of N for

N
(wr)
0 ≤ N ≤ 2n/2.

2. Suppose s1γ < |ε| so that s4
1γ

2 − ε2s2
1 < 0.

(a) By Point 2 of Theorem 3, for N ≤ −ε2/(4(ε2s2
1 − s4

1γ
2)), P

(wr,adj)
S is a decreasing function of N .

(b) By Point 3 of Theorem 3, for N > (s2
1 − ε2)/(4ε2s2

1), P
(wr,adj)
S is an increasing function of N and for

−ε2/(4(ε2s2
1 − s4

1γ
2)) < N < (s2

1 − ε2)/(4ε2s2
1), P

(wr,adj)
S is a decreasing function of N .

We have the following.

The above is summarised as follows:

Case |ε| < min(s1, (s1γ)/
√

2) < s1γ:

� P
(wr,adj)
S is a decreasing function of N in the range 0 < N < N

(wr)
0 ;

� P
(wr,adj)
S is an increasing function of N in the range N

(wr)
0 < N < N

(wr)
1 ; and

� P
(wr,adj)
S is a decreasing function of N in the range N

(wr)
1 < N < 2n/2.

� P
(wr,adj)
S attains a minima at N

(wr)
0 and a maximum at N

(wr)
1 .

Case s1 < |ε| < (s1γ)/
√

2 < s1γ:

� P
(wr,adj)
S is an increasing function of N in the range 0 < N < N1; and

� P
(wr,adj)
S is a decreasing function of N in the range N

(wr)
1 < N < 2n/2.

� P
(wr,adj)
S attains a maximum at N

(wr)
1 .

Case s1γ < |ε| < s1:

� P
(wr,adj)
S is a decreasing function of N for 0 < N < N

(wr)
0 ; and

� P
(wr,adj)
S is an increasing function of N for N > N

(wr)
0 .

� P
(wr,adj)
S attains a minima at N

(wr)
0 .

Case max(s1, s1γ) < |ε|: P (wr,adj)
S is an increasing function of N for N > 0.
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Sampling without replacement: In this case, σ2 = 1/(4N)−1/2−n−2 = 1/(4N)−s2
1 and so σ2+s2

1 = 1/(4N).

Let N
(wor)
0 = (s2

1 − ε2)/(4s4
1) and so N

(wr)
0 > 0 if and only if |ε| < s1.

1. By Point 2 of Theorem 3, for N ≥ ε2/(4s4
1γ

2), P
(wor,adj)
S is a decreasing function of N .

2. By Point 3 of Theorem 3, for (s2
1 − ε2)/(4s4

1) < N < ε2/(4s4
1γ

2), P
(wor,adj)
S is an increasing function of N .

3. By Point 3 of Theorem 3, for N < (s2
1 − ε2)/(4s4

1), P
(wor,adj)
S is a decreasing function of N .

Let N
(wor)
1 = ε2/(4s4

1γ
2) and so N

(wor)
1 < 2n if and only if |ε| < s1γ. The above is summarised as follows:

Case |ε| < min(s1, s1γ):

� P
(wor,adj)
S is a decreasing function of N for 0 < N < N

(wor)
0 ;

� P
(wor,adj)
S is an increasing function of N for N

(wor)
0 < N < N

(wor)
1 ;

� P
(wor,adj)
S is a decreasing function of N for N

(wor)
1 < N ≤ 2n;

� PS attains a minima at N
(wor)
0 and a maxima at N

(wor)
1 .

Case s1 < |ε| < s1γ:

� P
(wor,adj)
S is an increasing function of N for 0 < N < N

(wor)
1 ;

� P
(wor,adj)
S is a decreasing function of N for N

(wor)
1 < N ≤ 2n;

� PS attains a maxima at N
(wor)
1 .

Case max(s1, s1γ) < |ε|: P (wor,adj)
S is an increasing function of N for 0 < N ≤ 2n.

We have s1 = 2−1−n/2 and γ = Φ−1
(
1− 2m−a−1/(2m − 1)

)
, where 2m/(2m − 1) < a ≤ m. The maximum

value of γ is achieved for a = m and this value is Φ−1
(
(2m+1 − 3)/(2m+1 − 2)

)
which is around 8.21 for m ≤ 64.

So, s1γ is not much greater than s1. It seems reasonable to assume that in practice the value of ε will turn out

to be such that max(s1, s1γ) < |ε|. Under this condition, both P
(wr,adj)
S and P

(wor,adj)
S are increasing functions of

N for 0 < N ≤ 2n. In other words, the anomalous non-monotonic behaviour will mostly not occur in practice.
The non-monotonic behaviour is observed only when the value of |ε| is small enough to be less than either s1 or
s1γ.

We further note the following point. The distribution of Wκ for κ 6= κ∗ is approximated as N (0, 2−n−2 +
1/(4N)) for sampling with replacement and is approximated as N (0, 1/(4N)) for sampling without replace-
ment. As explained in Sections 5.1 and 5.2, both of these approximations require making the assumption that
(p− 1/2)2 is negligible for p ∈ [1/2− ϑ1, 1/2 + ϑ1]. From (23), the assumption is meaningful only if we consider
s2

12−n/2 = 2−2−n/2 to be negligible. So, the derivation of the distribution of Wκ for κ 6= κ∗ is meaningful only
if 2−2−n/2 is considered to be negligible. Consequently, it is perhaps not meaningful to apply the analysis for
values of |ε| lower than 2−2−n/2. This is a further argument that the analysis actually shows PS is a monotonic
increasing function of N in the range where the analysis is actually meaningful.

Remarks: The following comments are based on the assumption that γ ≈ Φ−1(1− 2−a−1), i.e., 2m ≈ 2m − 1.

1. In [8] it was stated without proof that the first term of P
(wr,adj)
S given by (44) attains a maximum for

N = N
(wr)
1 .
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2. It was shown in [1] that the derivative of the first term of P
(wor,adj)
S given by (45) is zero for N = N

(wor)
1 from

which it was concluded without any further argument that P
(wor,adj)
S achieves a maxima at N = N

(wor)
1 .

We note that the complete picture of the dependence of the success probability on N was not provided in
either [8] or [1].

7 Conclusion

In this paper, we have carried out a detailed and complete analysis of success probability of linear cryptanalysis.
This has been done under a single unifying framework which provides a deeper insight and a better understanding
of how the success probability behaves with respect to the data complexity.
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A Some Results on Statistics

A.1 Order Statistics

Selçuk [26] used a result on order statistics to derive an expression for the success probability. We briefly
summarise this result.

Let T1, T2, . . . , T2m−1 be independent and identically distribution random variables with common density
function f(x) and common distribution function F (x). Let T(1), T(2), . . . , T(2m−1) be the random variables
T1, T2, . . . , T2m−1 sorted in ascending order. For 1 ≤ a ≤ 2m − 1, let q = 1 − 2−a. Then the distribution of
T(2mq) approximately follows N (µq, σ

2
q ) where µq = F−1(q) and σq = 2−(m+a)/2/f(µq). This follows from a

standard result in mathematical statistics. (See [28] for a proof of the asymptotic version of the result and [24]
for a proof of the concrete version of the result.)

Further suppose Ti = |Wi| where Wi follows N (0, σ1). Then Ti follows a half-normal distribution whose den-
sity function is f(y) = 2/(σ1

√
2π) exp(−y2/(2σ2

1)) and the distribution function F (y) is obtained by integrating
the density function f(y). In this case, T(2mq) approximately follows N (µq, σ

2
q ) where

µq = F−1(q) = σ1Φ−1(q) = σ1Φ−1(1− 2−a−1);

σq =
1

f(µq)
2−(m+a)/2 =

σ1

2φ (Φ−1 (1− 2−a−1))
2−(m+a)/2.

A.2 Compound Normal

Recall that the density function of N (µ, σ2) is denoted as f(x;µ, σ2).

Proposition 1. ∫ ∞
−∞

f(x; ay, σ2
1) · f(y;µ, σ2

2) dy = f(x; aµ, σ2
1 + a2σ2

2).

Proof.

f(x; ay, σ2
1) · f(y;µ, σ2

2)

=

[
1√

2πσ1

exp

{
−(x− ay)2

2σ2
1

}]
·
[

1√
2πσ2

exp

{
−(y − µ)2

2σ2
2

}]
=

(
1√
2π

)2 1

σ1σ2
exp

{
−
(

(x− ay)2

2σ2
1

+
(y − µ)2

2σ2
2

)}
=

(
1√
2π

)2 1

σ1σ2
exp

{
− 1

2σ2
1σ

2
2

(
σ2

2x
2 + (σ2

1 + a2σ2
2)y2 − 2y(σ2

2ax+ σ2
1µ) + σ2

1µ
2
)}

=

(
1√
2π

)2 1

σ1σ2
exp

{
−σ

2
1 + a2σ2

2

2σ2
1σ

2
2

(
σ2

2x
2

σ2
1 + a2σ2

2

+ y2 − 2y

(
σ2

2ax+ σ2
1µ

σ2
1 + a2σ2

2

)
+

σ2
1µ

2

σ2
1 + a2σ2

2

)}
=

(
1√
2π

)2 1

σ1σ2
exp

{
−σ

2
1 + a2σ2

2

2σ2
1σ

2
2

((
y − σ2

2ax+ σ2
1µ

σ2
1 + a2σ2

2

)2

+
σ2

2x
2 + σ2

1µ
2

σ2
1 + a2σ2

2

−
(
σ2

2ax+ σ2
1µ

σ2
1 + a2σ2

2

)2
)}

=

(
1√
2π

)2 1

σ1σ2
exp

{
−σ

2
1 + a2σ2

2

2σ2
1σ

2
2

(
y − σ2

2ax+ σ2
1µ

σ2
1 + σ2

2

)2

− (x− aµ)2

2(σ2
1 + a2σ2

2)

}
.
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Therefore,∫ ∞
−∞

f(x; ay, σ2
1) · f(y;µ, σ2

2) dy

=

∫ ∞
−∞

(
1√
2π

)2 1

σ1σ2
exp

{
−σ

2
1 + a2σ2

2

2σ2
1σ

2
2

(
y − σ2

2ax+ σ2
1µ

σ2
1 + σ2

2

)2

− (x− aµ)2

2(σ2
1 + a2σ2

2)

}
dy

=
1√
2π

exp

{
− (x− aµ)2

2(σ2
1 + a2σ2

2)

}
· 1√

2π

1

σ1σ2

∫ ∞
−∞

exp

{
−σ

2
1 + a2σ2

2

2σ2
1σ

2
2

(
y − σ2

2ax+ σ2
1µ

σ2
1 + σ2

2

)2
}

dy

=
1√

2π(σ2
1 + a2σ2

2)
exp

{
− (x− aµ)2

2(σ2
1 + a2σ2

2)

}
· 1√

2π

∫ ∞
−∞

exp

−1

2

(
y −

√
σ2

1 + a2σ2
2

σ2
1σ

2
2

σ2
2ax+ σ2

1µ

σ2
1 + σ2

2

)2
 dy

=
1√

2π(σ2
1 + a2σ2

2)
exp

{
− (x− aµ)2

2(σ2
1 + a2σ2

2)

}
= f(x; aµ, σ2

1 + a2σ2
2).

Proposition 2. Let X and Y be two random variables such that X ∼ N (aY, σ2
1) and Y ∼ N (µ, σ2

2), where a is
a constant. Then,

X ∼ N (aµ, σ2
1 + a2σ2

2).

Proof. Let, fX|Y (x, y), fX,Y (x, y) denote the conditional and joint distributions of the random variables X and
Y , respectively. Also, let fY (y) and fX(x) denote the marginal distributions of the random variables Y and X,
respectively. Then,

fX|Y (x, y) =
1√

2πσ1

exp

{
−(x− ay)2

2σ2
1

}
and fY (y) =

1√
2πσ2

exp

{
−(y − µ)2

2σ2
2

}
.

fX(x) =

∫ ∞
−∞

fX,Y (x, y) dy =

∫ ∞
−∞

fX|Y (x, y)fY (y) dy =
1√
2π
· 1√

σ2
1 + a2σ2

2

· exp

{
− (x− aµ)2

2(σ2
1 + a2σ2

2)

}
.

The last equality follows from Proposition 1. So, X ∼ N (aµ, σ2
1 + a2σ2

2).

A.3 Hypergeometric Distribution

Suppose an urn contains N distinguishable balls out of which R are red and the rest are white. A sample of size
n is chosen from the urn without replacement. For k ∈ {0, . . . , n}, the probability that there are exactly k red
balls in the sample is

p(k; n,N,R) =

(
R
k

)(
N−R
n−k
)(

N
n

) . (48)

Here p(k; n,N,R) is the probability mass function of the hypergeometric distribution H(k; n,N,R).
Let p = R/N and q = 1− p. According to Problem 2 in Section 11 of Chapter II of Feller [10],(

n

k

)(
p− k

N

)(
q − n− k

N

)n−k
< p(k; n,N,R) <

(
n

k

)
pkqn−k

(
1− n

N

)−n
. (49)
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Consequently, if N � n, then p(k; n,N,R) ≈
(
n
k

)
pkqn−k. In other words, if N � n, then the hypergeometric

distribution is well approximated by the binomial distribution.
Another approximation of the hypergeometric distribution by the normal distribution appears in Problem 10

in Section 7 of Chapter VII of Feller [10]. Suppose t ∈ (0, 1) and p are such that n
N → t, R

N → p as n,N,R→∞.

Let h = 1/
√

Np(1− p)t(1− t) be such that h(k − np) → x. Then p(k; n,N,R) ∼ hΦ(x). Consequently, if
Y is a random variable following the hypergeometric distribution H(k; n,N,R) then Y approximately follows
N (pn,Np(1 − p)t(1 − t)). Conditions for the normal approximation to be meaningful and bounds on the error
in the approximation have been provided in [19]. Using n = Nt, the random variable Y approximately follows
N (pn, np(1− p)(1− t)).
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