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A B S T R A C T

To decipher the genetic architecture of human disease, various types of omics data are generated. Two common
omics data are genotypes and gene expression. Often genotype data for a large number of individuals and gene
expression data for a few individuals are generated due to biological and technical reasons, leading to unequal
sample sizes for different omics data. Unavailability of standard statistical procedure for integrating such da-
tasets motivates us to propose a two-step multi-locus association method using latent variables. Our method is
powerful than single/separate omics data analysis and it unravels comprehensively deep-seated signals through
a single statistical model. Extensive simulation confirms that it is robust to various genetic models as its power
increases with sample size and number of associated loci. It provides p-values very fast. Application to real
dataset on psoriasis identifies 17 novel SNPs, functionally related to psoriasis-associated genes, at much smaller
sample size than standard GWAS.

1. Introduction

To decipher the genetic architecture of a human disease, various
types of omics data are generated. Two common omics data types are
(a) genotypes at a large number of marker loci, and (b) expression le-
vels for a large number of genes. Often these data are generated at the
genome scale using microarrays. Although traditionally data generated
by various omics platforms were analysed separately, in recent times
data integration and joint statistical analysis have been emphasised to
obtain robust inferences. One problem in joint statistical analysis of
multi-type omics data is that sample sizes of different data types vary.
There are many reasons for such variation. A major reason is that RNA
and protein are less stable than DNA. Therefore, commonly in a genetic
association study genotype data are available from a larger number of
individuals than data on gene expression. Further, assays for generating
gene expression data are expensive, that leads the researcher to gen-
erate and analyse genotype data first, arrive at a set of tentative in-
ferences pertaining to the research question based on the genotype
data, and then select a non random subset of individuals for gene ex-
pression assay to spawn additional information on disease association.
The non random selection may be due to degradation of the RNA
samples and/or other biological and technical reasons. Clearly, the

individuals whose gene expression values are missing will depend only
on expression profiles of itself and not on the genetic profile of other
subjects. Therefore, we can assume that the “missing” gene expression
values in the entire dataset are missing not at random (MNAR).
However, the variation in the sample sizes of different types of omics
data poses a major challenge in multiomics data analysis. This chal-
lenge motivated us to develop a statistical method to integrate the
available subset of gene expression information with the complete
genotype data, generated in a case-control study. Our method does not
rely on reference transcriptome data for imputation of missing gene
expression data that induces population stratification bias [7,11]. We
show that our proposed method is statistically powerful and can iden-
tify disease associated variants, that remain undetected by analysis of
genotype data alone.

Note that MNAR data that is often governed by sample selection
bias [8,15] could be analysed using a framework developed by Little
and Rubin [18]. For MNAR data, failure to account for the true miss-
ingness mechanism may result in biased parameter estimates [5] that
can be adjusted using the latent variables [12]. Although MNAR data
may be analysed using a pattern mixture model, the assumption of this
model [17] is violated by the data under consideration.

Here, we propose an integrated Genotype and gene Expression
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Method (iGEM), which is a novel two-step multi-locus association
method using a latent variable conjointly with logistic regression to
integrate genome-wide marker information with gene expression data
on a subset of individuals. We apply our method to 902 psoriasis cases
and 676 healthy controls. Genotype data for about half a million of
single nucleotide polymorphisms (SNPs) for all individuals and gene
expression data for both cases and controls on small subset of in-
dividuals were generated (dbGaP; phs000019.v1.p1). Using these real
data, we identified 17 novel SNPs, in addition to those identified in the
genome wide association study (GWAS) (that is using a single marker
test, viz. Chi square test or logistic regression followed with multiple
testing correction) by applying our method. We have also verified that
these novel SNPs confirm strong functional association with enhancing
psoriasis risk. To avoid computation intensive permutation or other
techniques, we have derived the asymptotic distribution of our pro-
posed test statistic that will aid in fast calculation of p-value in the real
dataset to detect associated loci. We have also identified other statis-
tical properties of our method using extensive simulations.

2. Results

2.1. Simulations

We carried out extensive simulations to assess the gain in statistical
power by our proposed data integration method. We simulate datasets
for various combinations of sample sizes for gene expression and gen-
otype data, considering different genetic models with different values of
relative risk (RR), allele frequency, penetrance function and other
parameters. We generate genotypes for cases and controls at K(=10)
independent marker loci and gene expression data for small subsets of
genotyped individuals. HWE at each locus is assumed for controls.
Cases are ascertained based on 1 to 4 causative SNP genotype(s) among
the 10 markers conjointly with an appropriate penetrance function and
RR as 1.25 or 1.5 at each causative locus under specific genetic model
assumption [20]. We consider three genetic models for risk such as
additive, multiplicative, and recessive. Minor allele frequency (MAF) at
each causative locus is assumed to be 0.05, while for a non-causative
locus it is assumed to range from 0.1 to 0.5. We have also simulated
causative and non-causative loci with comparable MAFs such as 0.1
(0.2) for all 10 markers and some other combinations of comparable
MAFs. We also simulated scenarios when there is no SNP effect at all
but the gene expression values have significant effect on the disease
status of the individuals. We simulated gene expression data using an
additive model for the effects of causative marker(s) for each individual
(Xiong et al. [30]). In our simulations, sample size for each case and
control group, was taken as 500, 700, and 1000 for genotype data and
100, 150, and 200 for gene expression data. We also compare the
performance of iGEM with the test based on genotype data alone, for
different sample sizes under different genetic models.

Under the null hypothesis, the empirical distribution of our test
statistic under each combination of sample sizes of gene expression and
genotype data, matches with the theoretically derived asymptotic dis-
tribution, which is a χ2 distribution with K+ 1 degrees of freedom. QQ
plots based on 10000 datasets generated under null hypothesis eluci-
dates this fact (Fig. 1a, b). In each case, the plot shows strong resem-
blance with theoretical asymptotic distribution. Using the asymptotic
distribution of the iGEM statistic, we calculated type I error rate based
on 10000 datasets. In all cases this rate was below 5% (Table 1, S1-S4),
suggesting that our test statistic is conservative in controlling false
positives. QQ plot also confirmed that one can use the asymptotic dis-
tribution of the iGEM statistic directly for real data analysis to calculate
the p-value associated with the observed value of the test statistic.

We calculate the power of the iGEM statistic based on 1000 datasets
with various sample sizes for gene expression data and genotype data
under different genetic models. We found that in each scenario the
power of our test statistic is increased substantially compared to the test

based on genotype data only; (1) as the number of causative SNPs in-
creased (Fig. 1c, d, S1a, S1b), (2) as the sample size of genotype data
increased, for a fixed sample size of gene expression data, and vice
versa (Tables 2, 3, S5–S8), and (3) when the combined sample size of
gene expression and genotype data increased (Fig. 1e, f). Increment of
power, upon inclusion of a larger set of gene expression data along with
GWAS data is clearly discernible (Figs. 1e, 1f); similar trend is observed
for other genetic models as well (Figs. S1c, S1d). Moreover, in the ab-
sence on any information from gene expression data, the power of our
test statistic remained the same as the test based on genotype data only,
for all simulation scenarios (Fig. 1d, S1b). These results clearly indicate
that iGEM is able to capture information through gene expression, only
when it is available. Results based on more extensive simulations,
strengthen our claim that iGEM performs better than a genotype based
association test for case-control data.

Interestingly we find that our method also identifies associated
genes based on gene expression only, even when there is no effect of
SNP. We performed extensive simulations where we generated data
with null SNP effect but significant effect of gene expression. iGEM
seems to be powerful in such cases also, keeping type I error rate below
5% level (Table S9). Moreover we observed that power of the test in-
creases as sample size increases (Table 4).

2.2. Application of iGEM on Psoriasis data

We apply our proposed method on genome wide association data
obtained from dbGaP (phs000019.v1.p1) pertaining to 902 psoriasis
cases and 676 healthy individuals, with expression profiles of 148 dif-
ferentially expressed genes for a subset of nearly 30 psoriasis patients
and nearly 30 normal individuals for each gene. Integrative analysis
using iGEM identified association of psoriasis with some SNPs and/or
differentially regulated genes. In this dataset, we have applied our
proposed method to each single SNP to investigate whether it is able to
detect any SNP that remained unidentified by application of standard
GWAS methods. As described in Section 4.3, using iGEM, we find the
set (SI) of all associated SNPs including the ones that remain uni-
dentified through single marker test. We see that ℂ(S) = 135, ℂ
(S∗ ∩ S∗∗) = 25 and ℂ(S ∩ (S∗ ∩ S∗∗)) = 8, where ℂ(A) denotes the
number of elements in a set A and S, S∗, and S∗∗ are defined in Section
4.3. Hence the total number of associated SNPs is 152 out of which 17
novel SNPs are identified by our method.

Table 5 represents the functional annotation of 17 novel iGEM SNPs.
Interestingly, we find some of reported variants involved in psoriasis
pathogenesis, are in strong LD with some of the novel iGEM SNPs
(Table 6). Moreover, we find that all novel SNPs are strongly linked
with variants carrying important functional information (Table S10).
Although the sample size of the psoriasis dataset analysed here is much
less compared to other GWA studies (Stuart et al. [25]; Tsoi et al. [28];
Villarreal-Martínez et al. [29]; Strange et al. [24]), with the little extra
information on gene expression, our method identified disease asso-
ciated SNPs successfully. We further investigated the regulatory func-
tions of these 17 novel SNPs and their linked SNPs using HaploReg v4
(http://www.broadinstitute.org/mammals/haplo-reg/haploreg_v4.
php) (Table S10). Interestingly, we find that some SNPs overlap with
binding sites of transcription factors (TFs) viz. nuclear factor kappa-
light-chain-enhancer of activated B cells (NF-κB), that play many vital
roles in psoriasis pathogenesis. Moreover, NF-κB regulate both innate
and adaptive immune systems.

Boxplots of gene expression corresponding to genotypes of the dis-
covered loci strengthen the evidence of functional relationship of the
disease with these variants. Expression of Solute Carrier Family 16
Member 10 (SLC16A10) clearly depicts a functional relationship with
rs3132496 (T/G) (Fig. 2a) under a dominant model. Calcium Regulated
Heat Stable Protein 1 (CARHSP1) and MAX Dimerization Protein 1
(MXD1) genes of psoriasis patients illustrate distinct functional re-
lationships with rs3817151 (C/T) (Fig. 2b) and rs13026755 (C/T) (Fig.
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S2a) respectively under dominant model. We find a trend in gene ex-
pression with respect to genotypes for each of the above three SNPs.
Expression of Kynureninase (KYNU), Coiled-Coil Alpha-Helical Rod
Protein 1 (CCHCR1), and Peptidase Inhibitor 3 (PI3) also show func-
tional relationships with rs2083482, rs3873386, and rs609932 respec-
tively (Figs. S2b, S2c, S2d), under a recessive model. Similar relation-
ship exists for rs607331 as it is in strong LD with rs609932. We found
an interesting functional difference in gene expression of CARHSP1
with respect to genotype of rs2054213 (A/G) (Fig. 2c) among cases
under both dominant and recessive models. Simultaneously, there is a
significant difference between the homozygotes under a codominant
model. Therefore, increase in sample size may provide a more clear

Fig. 1. Performance of iGEM based on simulated data: (a) QQ-plot with sample sizes for gene expression and genotype as 100 and 500 respectively; (b) QQ-plot with
sample sizes for gene expression and genotype as 200 and 1000 respectively; (c) Comparison of power for iGEM and test based on genotype only, for multiplicative
model with RR 1.5, in presence of expression QTL (eQTL), with respect to number of causal genotype loci; (d) Comparison of power for iGEM and genotype based test
for multiplicative model with RR 1.5, without any effect of eQTL, with respect to number of causal genotype loci; (e) Power comparison of iGEM and genotype based
test for different genetic models with RR 1.5 and 1 causal genotype locus with eQTL effect; (f) Power comparison of iGEM and genotype based test for different
genetic models with RR 1.5 and 2 causal genotype loci with eQTL effect.
(G,n): Genotype based test using n samples; (G+ E,n): iGEM using n samples; (method,disease model) where ‘disease models’ are ADD (Additive), MUL
(Multiplicative), and REC (Recessive) and ‘method’ is either genotype based test (G) or iGEM (G + E).

Table 1
Type I error rate under different combination of sample sizes of gene expression
and genotype data based on 10,000 simulations (five out of ten have
MAF = 0.05 and rest are 0.1, 0.2, 0.3, 0.4, 0.5).

SSG 500 700 1000

SSGE

100 0.0283 0.0310 0.0295
150 0.0293 0.0306 0.0290
200 0.0267 0.0265 0.0301

SSG: sample size for genotype data.
SSGE: sample size for gene expression data.
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picture about the genetic model. Moreover, the boxplot reveals that the
gene expression clearly follows a trend with respect to genotypes for
rs2054213.

3. Discussion

iGEM identified rs3132496 and rs3873386 to be associated with
SLC16A10. rs3132496 is located very close to the MHC class IeC
(HLAeC) gene, known as psoriasis susceptibility gene 1 (PSORS1).
rs3873386 is located in 6p21.33, which is reported to be associated
with CCHCR1 [4], that encodes a protein that is over-expressed in le-
sional skin of psoriasis patients and contains non synonymous sub-
stitutions across many populations [1]. SLC16A10 is involved in
transportation of inorganic ions and amino acids pathway associated
with psoriasis risk. Genetic variation in this pathway potentially in-
creases the exposure to psoriasis development by functional modulation
of T cells [2]. SLC16A10 is located very close to another psoriasis
susceptible gene TRAF3 Interacting Protein 2 (TRAF3IP2) (6q21) that
contains risk SNPs [6,13]. TRAF3IP2 encodes a protein involved in IL-
17 signaling pathway and activates NF-κB and mitogen-activated pro-
tein kinase (MAPK) pathways ([6,13]; Strange et al. [24]). These
pathways provide insight into biological mechanism associated with
psoriasis susceptibility.

We identify rs13026755, located close to long noncoding RNA
AC010733.4 and REL (2p16.1) and is in strong LD with two already
reported SNPs rs62149416(Tsoi et al. [28]) and rs702873(Strange et al.
[24]) having r2 = 0.85 and r2 = 0.59 respectively. REL encodes a
member of the NF-κB family of TFs and aids in NF-κB signaling
pathway, that is associated with psoriasis pathogenesis (Strange et al.
[24]).

Further, we identified rs2054213 in intronic SET Domain
Containing 1A (SETD1A) (16p11.2) and is in strong LD (r2 > 0.80)
with rs10782001 located in F-Box And Leucine-Rich Repeat Protein 19
(FBXL19) (16p11.2)(Stuart et al. [25]), rs12445568 (Tsoi et al. [28])
residing in intronic Syntaxin 1B (STX1B) (16p11.2), and rs12924903
replicated in Mestizo population(Villarreal-Martínez et al. [29]).
FBXL19 activates NF-κB as a putative inhibitor and hence aids in NF-κB
signaling pathway(Stuart et al. [25]).

We note that nearly all SNPs detected by our method and their
linked SNPs are enriched in transcriptional activities, viz., TF binding
sites and/or DNase hypersensitive site (DHS) and/or histone mod-
ification marks (H3K4me1, H3K27ac chromatin marks in enhancer re-
gion, and H3K4me3, H3K9ac chromatin marks in promoter region) in
blood, skin cells, etc. (Tables 5 and S10).

Among other SNPs identified by our method rs7195745 is located in
psoriasis associated region 16q23 (Nair et al. [21]). Three SNPs
rs607331, rs609932, and rs13045901 are associated with PI3, which is
reported to be misregulated in psoriasis(Ruano et al. [23]). The last one
is located near small noncoding Y_RNA, that is increasingly gaining
importance for specific cellular functions and has been recently de-
tected as an abundant part in the blood and tissues of humans [14]. In
our analysis the findings of strong link with already reported SNPs, in a
way highlights the strength of our method to detect disease associated
SNPs. Two other SNPs, rs2296633 and rs857369 are associated with
C10orf99 (10q23.1), which is an upstream component of growth signal
transduction pathway associated to psoriasis [10]. Among other SNPs
identified by iGEM, rs16859665, rs7122993 and rs12946388 are asso-
ciated with Wnt Family Member 5A (WNT5A), ETS Homologous Factor
(EHF) and Keratin 16 (KRT16) respectively. While, the first two genes
are reportedly associated with psoriasis pathogenesis ([9]; Swindell
et al. [27]), the SNP rs12946388 resides in Mitogen-Activated Protein
Kinase Kinase 6 (MAP2K6), that functionally contributes to the disease

Table 2
Power of iGEM and only genotype based test (given in brackets) for different genetic models with varying sample sizes, relative risk as 1.5 and one causal locus, based
on 1000 simulated datasets (five out of ten loci have MAF = 0.05, rest are 0.1, 0.2, 0.3, 0.4, 0.5).

Additive Multiplicative Recessive

SSG

SSE 500 700 1000 500 700 1000 500 700 1000

100 0.633 (0.347) 0.726 (0.465) 0.847 (0.659) 0.538 (0.218) 0.611 (0.258) 0.720 (0.422) 0.499 (0.194) 0.591 (0.255) 0.692 (0.353)
150 0.646 (0.388) 0.753 (0.495) 0.860 (0.648) 0.539 (0.239) 0.617 (0.279) 0.718 (0.416) 0.500 (0.208) 0.586 (0.260) 0.709 (0.396)
200 0.676 (0.392) 0.781 (0.559) 0.862 (0.694) 0.542 (0.257) 0.625 (0.333) 0.732 (0.444) 0.541 (0.222) 0.585 (0.288) 0.715 (0.399)

SSG: sample size for genotype data; SSGE: sample size for gene expression data.

Table 3
Power of iGEM and test based on genotype only (given in brackets) for different genetic models with varying sample sizes, relative risk as 1.5 and one causal locus
based on 1000 simulated datasets with comparable frequencies of causal and non causal loci (all MAF = 0.1).

Additive Multiplicative Recessive

SSG

500 700 1000 500 700 1000 500 700 1000
SSE
100 0.818 (0.694) 0.913 (0.844) 0.979 (0.95) 0.602 (0.387) 0.728 (0.525) 0.841 (0.733) 0.577 (0.304) 0.666 (0.455) 0.769 (0.598)
150 0.840 (0.721) 0.910 (0.854) 0.969 (0.949) 0.646 (0.424) 0.732 (0.582) 0.871 (0.761) 0.575 (0.343) 0.684 (0.479) 0.823 (0.661)
200 0.852 (0.757) 0.939 (0.894) 0.987 (0.978) 0.650 (0.457) 0.785 (0.612) 0.892 (0.767) 0.593 (0.378) 0.688 (0.522) 0.818 (0.689)

SSG: sample size for genotype data; SSGE: sample size for gene expression data.

Table 4
Power of iGEM and test based on genotype only (given in brackets) under
different combination of sample sizes of gene expression and genotype data
based on 1000 simulations in absence of any SNP effect (five out of ten have
MAF = 0.05 and the rest are 0.1, 0.2, 0.3, 0.4, 0.5).

SSG

500 700 1000

SSGE

100 0.334 (0.034) 0.346 (0.046) 0.3708 (0.048)
150 0.343 (0.051) 0.359 (0.054) 0.376 (0.045)
200 0.352 (0.049)1 0.361 (0.056) 0.395 (0.047)

SSG: sample size for genotype data.
SSGE: sample size for gene expression data.
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phenotype [19].
We find another SNP rs2083482, close to Fidgetin (FIGN) (2q24.3),

that is associated with psoriasis susceptible Signal Transducer And
Activator Of Transcription 1 (STAT1) (2q32.2). Interferon Induced With
Helicase C Domain 1 (IFIH1) that lies very near to FIGN, encrypts an
inherited receptor that is engaged in triggering type I Interferon (IFN)
in response to infection caused by microbes and is associated to psor-
iasis susceptible loci rs17716942(Strange et al. [24]). Other studies
([16,31]) report missense IFIH1 SNPs associated with decreased risk of
psoriasis. On the other hand, expression of STAT1 is increased in
psoriatic skin. It also regulates the expression of interferon-responsive
genes. Besides, studies (Sun and Zhang [26]) also reveal the pivotal role
of STAT1 in transcriptional regulatory network for psoriasis.

Again, the available gene expression data can also be utilised for
another purpose. To detect any possible functional impact of a SNP
identified by GWAS, we regress gene expression on genotype and find a
few SNPs are associated with gene expression. To examine how our
newly proposed method works in this situation, we apply the part of our
model that handles the specification bias due to non-random missing
gene expression data instead of the standard regression approach. Our
method identifies one additional SNP rs2844627. Table S11 presents
the detailed results of this analysis.

Compared to some other methods, our proposed multi-locus asso-
ciation method is free from any error that usually accumulates due to
the use of summary statistics [11] or imputing gene expression data

using genotype information [7].
We have developed a precise test statistic T, with a simple asymp-

totic distribution, for fast calculation of p-value in real datasets.
Simulation study shows that the empirical distribution of the test sta-
tistic under null hypothesis is approximately same as the distribution of
a χ2 variable with appropriate degrees of freedom. Even for small
samples, we can use bootstrap or a permutation technique to calculate
the p-value.

Simulation studies reveal that iGEM is robust, consistent and more
powerful than methods based on analysis of genotype data alone
(Tables 2, 3, S5-S8). The robustness is reflected in Tables 2, 3, S5-S8,
when iGEM extracts relevant information from genotype data (of fixed
sample size) and integrates it with gene expression data, as the sample
size of the latter varies from low to moderately low, under various
genetic models. The consistency of our method is established in The-
orem 2 while, increase in power with increase in (a) the sample size
and, (b) the number of causal loci are evident from Tables 2, 3, S5-S8.

Our method identified 17 additional loci along with all the SNPs
that could be identified using standard genome-wide association (GWA)
method in the given sample. Interestingly, we found that a few of these
17 SNPs, were in strong LD with some reported psoriasis susceptible
SNPs. The method proposed here obviously is more efficient than the
traditional GWAS in detecting even low-effect SNPs.

The specification bias that arises due to non-random subset selection
is tackled statistically using a firm theory underlying our method.
Application of iGEM to case-control data could provide new directions
for further biological exploration. Our method holds promise for ex-
tending the integration paradigm using more than two different types of
omics data. Even when the sample size for gene expression data is not
very large, iGEM is able to extract some information that increases the
power of the test.

Table 5
Functional annotation of 17 SNPs identified by iGEM.

SNP found by iGEM Chr Assoc. Gene PEHMDa Remark of iGEM SNP

rs2083482 (12 kb 3′ of FIGN) 2 STAT1
rs13026755 2 RRM2 Bl H3K27ac_Enh in Bl,FK;

H3K4me1_Enh in Bl
rs16859665 (intron of C3orf70) 3 WNT5A
rs3873386 (4.3 kb 5′ of 6 SLC16A10 Bl H3K9ac_Pro in Bl;
XXbac-BPG248L24.13) (Bl) H3K4me1_Enh in FF
rs6947649 (133 kb 3′ of AC006322.1) 7 AKR1B10 SKIN H3K27ac_Enh in Bl
rs10815803 9 GDA
rs2296633 (DOCK1, intronic) 10 C10orf99 H3K4me1_Enh in FF, M;

H3K27ac_Enh in FF
rs7122993 (BARX2, intronic) 11 EHF SKIN H3K4me1_Enh in FK

(SKIN) H3K27ac_Enh in FK
rs1864335 (RYR3, intronic) 15 RAB27A SKIN H3K4me1_Enh in FM;

(SKIN) H3K27ac_Enh in FM
rs7195745 (SLC38A8, intronic) 16 GDPD3 H3K27ac_Enh in FF
rs12946388 (MAP2K6, intronic) 17 KRT16 Bl H3K4me1_Enh in Bl
rs13045901 (19 kb 3′ of Y%RNA) 20 PI3
rs607331, rs609932 20 PI3 SKIN H3K4me1_Enh in FM;
(RP5-839B4.7, intronic) H3K27ac_Enh in FM
rs2054213 (SETD1A, intronic) 16 CARHSP1 Bl, H3K4me1_Enh in Bl, FF, FM;

ADF, H3K9ac_Pro in ADF;
SKIN, H3K4me3_Pro in Bl, FF, FK;
EK cells, H3K27ac_Enh in Bl, FF, FM;

rs3132496 (28 kb 3′ of HLA-C) 6 SLC16A10 Bl,
SKIN

rs857369 10 C10orf99
(PCDH15, intronic)

a PEHMD denotes the presence of promoter and enhancer histone mark in tissues; DNase hypersensitive sites are shown in brackets. Bl: Blood, FF: Foreskin
Fibroblast, FM: Foreskin Melanocyte, FK: Foreskin Keratinocyte, ADF: Adult, Dermal Fibroblast, EK: Epidermal Keratinocyte, IPSC: Induced pluripotent stem cells;
Enh: Enhancer, Pro: Promoter.

Table 6
Novel iGEM SNPs in LD with reported psoriasis susceptible SNPs.

SNP Chr Reported SNP(s) LD values (r2)

rs13026755 2 rs62149416(Tsoi et al. [28]) 0.85
rs702873(Strange et al. [24]) 0.59

rs2054213 16 rs10782001(Stuart et al. [25]), 0.96
rs12445568(Tsoi et al. [28]) 0.85
rs12924903(Villarreal-Mart´ ınez et al. [29]) 0.92
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4. Materials and methods

4.1. Overview of the data structure

We apply our integrated approach to a dataset containing genome-
wide genotype information from 902 psoriasis patients and 676 healthy
controls of European ancestry, with expression of 148 functionally
annotated genes for a subset of about 30 cases and 30 controls for each
gene(Nair et al. [22]) (dbGaP; phs000019.v1.p1). About 440K SNPs,
genotyped using high density oligonucleotide arrays by Perlegen Sci-
ences (Mountain View, CA, USA) passed data quality control checks for
all individuals. Markers not in Hardy-Weinberg Equilibrium (HWE) (p-
value < 10−6) and minor allele frequency (MAF) < 0.05 were ex-
cluded. Imputed genotypes with R2 > 0.3 (between true and imputed
SNP genotypes) were included for genotyping. Further, RNA samples
from skin biopsies of the smaller subset of samples, from University of
Michigan, Department of Dermatology, were analysed using Affymetrix
U133 Plus 2.0 arrays to evaluate expression of probes. Raw data from
microarrays were processed appropriately and adjusted for batch and
sex effects before further analysis. Average gene expression was cal-
culated from multiple probes and served as gene expression for each
gene (Nair et al. [22]). Here selection of subjects for gene expression
profiling was not random; hence these data conform to our assumption
of MNAR for the incomplete gene expression dataset.

We introduce the general analytical framework under which such
data may be integratively analysed. Suppose that a large group of I
individuals comprising patients and controls are genotyped at K marker
loci, while a small subset of I1 individuals are assayed for gene ex-
pression profiles. These two types of data contain more information
than a single type of data. So, we propose a test statistic that explores

the disease-gene association by integrating available gene expression
and entire genotype information. Our method can accommodate un-
restricted number of markers belonging to a particular gene or a user
defined genomic region, provided that K is smaller than the sample size,
so that parameters are estimable.

4.2. Sub-sample selection criteria

Following Heckman [12], we define a latent variable Y2 to model
the non-random missing pattern of gene-expression (Y1) for genotyped
individuals. The sub-sample selection criterion assures availability of Y1

for individual i. Y1i is observed if Y2i ≥ a, and not observed if Y2i < a,
for the ith individual for a particular gene and “a“is some constant. We
introduce I latent variables Y21, Y22, …, Y2I that follow N(0,σ22) in-
dependently and identically. Thus Y2i ≥ a (< a) implies expression is
available (unavailable) for individual i. Using simple algebra, it can be
shown that the choice “a”may be replaced by 0.

4.3. Integrated genotype expression method (iGEM)

We propose a two-step integrated Genotype Expression Method
(iGEM) to identify some novel loci along with those found in standard
GWAS. The first step generates a list of strongly associated loci after
Benjamini-Hochberg (BH) correction [3] using logistic regression of
case-control status on genotypes. The second step combines additional
information from gene expression. For individual i, the model is,

= + + + = …
=

Y X g U i I, 1, ,i cci
k

K

k ik i1 0 1
1

2 1 1
(1)

Fig. 2. Boxplot showing gene expression and genotype relationship under a dominant model for SNPs rs3132496, rs3817151, and rs2054213.
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= + + + = …
=

Y X g U i I, 1, ,i cci
k

K

k ik i2 0 1
1

2 2
(2)

= = + = …
=

logit P X g i I( ( 1)) , 1, ,cci
k

K

k ik0
1

1
(3)

where, Y1i is the gene expression for gene G (i= 1,…, I1), Xcci is the
disease status and gij is the genotype of individual i at the jth SNP (i= 1,
…, I1, I1 + 1,…, I; j= 1,…,K). gij assumes values 0,1,2 for the 3 possible
genotypes at a biallelic SNP locus. Xcci takes 0 for controls and 1 for
cases. Eq. (3) is a standard logistic regression model for genotype as-
sociation that is integrated with information from gene expression data
(Eq. (1) and (2)). We assume that U1 and U2 are random error com-
ponents.

To facilitate the description of our proposed method, we write Eqs.
(1)–(3) using matrix notation. Thus, for individual i, we have,

= + = …Y X U i I, 1, ,i i i1 1 1 1 (4)

= + = …Y X U i I, 1, ,i i i2 2 2 (5)

= = = …logit P X X i I( ( 1)) , 1, ,cci i3 (6)

where β= (β0,β1,β21,…,β2K)′, β∗ = (β0
∗,β1

∗,β21
∗,…,β2K

∗)′, and
γ= (γ0,γ11,…,γ1K)′. We assume that,

= =

=
=

=

E U j
U U

E U U
i i

j j

(i) ( ) 0, 1,2,3
(ii)( , )jointly follows a bivariate normal distribution

(iii) ( )
if

0 otherwise; 1, 2

ji

i i

ji j i
jj

1 2

If U1i and U2i are independent, data on Y1i would be missing randomly
and in that case E(U1i|sub ‐ sample selection rule) = 0. But here, U1i and
U2i are correlated. Therefore, given the sub-sample selection rule, the
conditional distribution of U1i will depend on X2ii. e. E(U1i|sub ‐ sample
selection rule) = E(U1i|Y2i ≥ 0) = E(U1i|U2i≥ −X2iβ∗). The sub-sample
regression function, depending on X1i and X2i will be,

=
= +
E Y X E Y Y X

X E U U X X
( | sub sample selection rule, ) ( | 0, )

( | , )
i i i i i

i i i i i

1 1 1 2 1

1 1 2 2 1 (7)

Our hypotheses of interest are: H0 : β1 = 0, γ1 = 0, against H1 :H0 is
not true. Naturally rejection of H0 would indicate the presence of as-
sociation. To test this, we propose a new statistic as:

= +T
V

( )
( )

( ) ( )1 1 1 1
1 1

2

1

1

(8)

where and V ( )1 are consistent estimators of variance-covariance
matrix of = …( , , )K1 11 1 and 1, respectively. Explicit expression of the
required estimators are given in Appendix.

Let P1(j), P2(j), and PI(j) be the BH-corrected p-values for the j-th
locus based on GWAS (equation 3), test identifying significant gene
expression adjusted for genotype (equations 1 and 2), and null dis-
tribution of T. First we screen loci with P1 < 0.1 to include loci with
moderate to weak effect. We select a set of loci SI associated with
phenotype where SI = S ∪ (S∗ ∩ S∗∗) with S= {j : P1(j) < 0.05},
S∗ = {j : PI(j) < min (P1(j),P2(j))}, and S∗∗ = {j : PI(j) < 0.05}. This
min(P1,P2)-criterion (1) eliminates unusually large effect of gene ex-
pression that may be due to other epigenetic mechanism and (2) in-
cludes weakly associated loci undetected by GWAS, carrying additional
information from expression data.

Now the problem reduces to calculating PI using the distribution of
T under H0. We derive the asymptotic distribution of T under H0 as it is
extremely difficult, if not impossible, to get its exact distribution in a
compact form. This helps in faster calculation of p-value for the ob-
served value of the test statistic and reduces computational burden to a
great extent, compared to computation intensive procedure like per-
mutation technique. In these genetic studies, sample sizes are usually

large enough so as to apply large sample theory to develop a suitable
test for the null hypothesis under consideration. We summarize a few
large sample properties of the above statistic in the following two
theorems.

Theorem 1. Under the assumptions of the model described in Eqs. (1)–(3)

+T Ias
L

K 1
2

1 (9)

Theorem 2. The test procedure using T is consistent i.e. power of the
test increases as sample size increases.

Proofs of the above theorems are given in the Appendix. Theorem 1
justifies the accuracy of p-value calculated on the basis of a χK+1

2

variable while Theorem 2 ensures the high power associated with this
test.

iGEM captures information from genotype data and gene expression
data together. Simulation confirms that power based on combined
genotype and gene expression is much greater than that based on
genotype data only. In Theorem 3, we present a result ensuring that in
order to match the power based on iGEM, the sample size for test based
on genotype only must be greater than that for iGEM. Proof of this
theorem is given in the Appendix.

Theorem 3. Let n∗ be the sample size for the test based on genotype
data only. Also let n and n1 be the sample sizes of genotype data and
gene expression data respectively when we use a test for association
based on iGEM. To achieve approximately same power by these two
tests, it is necessary that n∗ > n under the assumptions of the model as
given in Eqs. (1)–(3).

Supplementary data to this article can be found online at https://
doi.org/10.1016/j.ygeno.2018.09.011.
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