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Abstract Bosonization in curved spacetime maps massive
Thirring model (self-interacting Dirac fermions) to a gener-
alized Sine–Gordon model, both living in 1+1-dimensional
curved spacetime. Applying this duality we have shown that
the Thirring model fermion, in non-relativistic limit, gets
identified with the soliton of non-linear Scrodinger model
with Kerr form of non-linearity. We discuss one particu-
lar optical soliton in the latter model and relate it with the
Thirring model fermion.

1 Introduction

Mapping between distinct theories has proved to be a power-
ful tool throughout the development of physics. Apart from
the aesthetic satisfaction of relating very different physical
systems via mapping their respective theories, it has great
analytical and experimental utility. In some cases, the dual-
ity is between a strongly interacting theory and a weakly
interacting theory so that analytical results from the latter
(that are easier to derive) can yield important results for the
former (that may be intractable as such). In this context, the
most celebrated example of recent times is the AdS–CFT
correspondence [1] where the duality is between a weakly
coupled theory (gravitation in the bulk) and a strongly cou-
pled theory (conformal field theory at the boundary). Another
form of useful duality exists whereby two different systems
are governed by formally similar dynamics, (eg. structurally
same equations of motion in a purely algebraic sense) such
that one of the systems is more conducive to experiments
that can provide information of verification of certain con-
jecture in the dual theory. A very well-known example in this
context is the analogue gravity models [2] that provide signa-
tures of Hawking radiation which is operationally impossible

a e-mail: subirghosh20@gmail.com

to detect in realistic General Relativity scenario, mainly due
to its exceedingly small value.

In a recent paper [3] a novel form of duality has been
revealed between a system obeying Dirac equation in (1+1)-
dimensional curved spacetime and the multiphoton Rabi
model. Exploiting this duality it is possible to simulate behav-
ior of a relativistic particle near a strong gravitational field
(Dirac equation for the particle in a black hole background)
in a trapped-ion experimental platform (Rabi model). Inter-
estingly enough, experimentally observed (as well as analyti-
cally computed in Rabi model framework) nature of the parti-
cle trajectory matches with the numerically computed Zitter-
bewegung motion of the particle in gravitational background.
This duality is a result of the algebraic similarity between the
two quantum mechanical models where it was sufficient to
compare their Hamiltonians. In the present article we further
pursue this idea and reveal that there exists another duality
at a different level – the quantum field theoretic framework.
In particular we have shown that a relativistic theory of self-
interacting massive Dirac fermions (massive Thirring model)
in curved spacetime can be mapped to a form of non-linear
Scroedinger equation supporting Kerr-type of solitons, in the
non-relativistic limit. The scheme that allows an exact quan-
tum correspondence between the fermionic theory (massive
Thirring model) and the relativistic bosonic theory (Sine–
Gordon theory from which the Schroedinger theory emerges
in the non-relativistic limit) in 1 + 1-dimensions is known as
bosonization [4,5].

Before proceeding further it is necessary to put the present
work in its proper perspective. Our aim is to study fermionic
field theory and in particular behavior of fermions in a strong
gravitational field. As we have demonstrated in the present
work there is a duality between the above theory and Kerr
solitons. Thus we can exploit the well studied theoretical
literature on Kerr soliton. More importantly because Kerr
solitons have been experimentally observed in laboratory one
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can obtain predictions for the dual fermion theory. For this
reason at the end of this work we have shown how one can
map the results from soliton sector to results (or predictions)
in the fermion sector. This scheme is very much in line with
the work in [3].

Generically solitons are finite energy and localized solu-
tions of non-linear differential field equations of motion with
an important property that their profiles remain unchanged
even after collisions during their time evolution. Kerr solitons
are produced as a result of a delicate balance between non-
linear Kerr effect (that changes refractive index of an optical
medium under applied electric field) and dispersion of the
wave propagation. We mention just a few works on theoreti-
cal aspects of Kerr solitons [6]: Kerr Soliton collisions have
been studied in [7,8] and references therein. A new kind of
optical soliton, named as holographic soliton was proposed
in [9,10]. This type of soliton is formed when two interacting
waves generate a periodic change in the refractive index, and
at the same time the solutions are Bragg diffracted from the
same induced grating.

The first experimental finding Kerr soliton was reported in
[11,12]. Other experimental studies on Kerr solitons include
collisions [13–17] , fission and annihilation [18,19], and spi-
raling [20,21]. optical solitons have been observed in dif-
ferent systems such as atom vapor [22,23], photorefractive
[24,25] and photovoltaic crystals [26], thermal nonlinearities
[27], liquid crystals [28].

2 Bosonization

The phenomenon of bosonization [4,5], an exact duality
between a relativistic fermionic theory and a relativistic
bosonic theory, can be achieved in 1 + 1-dimension. In the
present instance, the Dirac theory in curved background can
be mapped to a generalized Sine–Gordon theory in curved
spacetime [29]. In this paper we have shown that the lat-
ter, in non-relativistic limit and for small coupling reduces
to Non-linear Schrodinger (NLS) model with Kerr form of
non-linearity [30], allowing various types of optical soliton
solutions (for a review, see [6]). We are interested in this
final identification and will reveal the connection between
the original Dirac fermion in gravity and the NLS optical
soliton.

In the original bosonization, Coleman [4] considered a
self-interacting fermion theory, the massive Thirring model
in flat spacetime

LMT = 1

c

[
i h̄cχ̄γμ∂μχ − λ2

2
jμ jμ − c2mχ̄χ

]
,

jμ = χ̄γμχ. (1)

The fields and parameters have dimensions [χ2] =
(length)−1, [λ2] = [(mass)(length)3/(time)2]. On the

other hand the self-interacting bosonic Sine–Gordon model
is

LSG = 1

c

[
1

2
∂μφ∂μφ + α

β2 cos(βφ)

]
, (2)

with the fields and parameters having dimensions [φ2] =
(mass)(length)3/(t ime)2], [β] = [φ]−1, [α] = (length)−2.
By comparing the two respective perturbation series term by
term, Coleman [4] proved that the fermionic and bosonic
theories were equivalent (or dual) provided the following
mapping between the coupling constants and the fields are
assumed:

4π

ch̄β2 = 1 + λ2

ch̄π
, − β

2π
εμν∂νφ = jμ,

α

β2 cos(βφ) = −σc2mχ̄χ (3)

with ε01 = 1. σ is a cut-off dependent dimensionless numer-
ical parameter [4]. Subsequently, Mandelstam [5] compli-
mented this by constructing Fermi field operators as non-
local combination of canonical Bose fields. The final out-
come of this beautiful duality is that the massive Thirring
fermion is the Sine–Gordon soliton [4]. The bosonization
technique has been generalized for curved spacetime by Eboli
[29] with a non-trivial result that the Sine–Gordon model has
a position dependent effective mass.

3 Bosonization in curved spacetime

Let us provide the results for bosonization in curved space-
time as derived by Eboli [29]. The Curved spacetme Massive
Thirring model is

LCMT =
√−g

c

[
i h̄ceμ

a (χ̄γ a∂μχ) − λ2

2
jμ jμ − c2mχ̄χ

]
,

jμ = χ̄γμχ, (4)

where the zweibin fields (eμ
a , eaμ) are defined by gμν =

eaμe
b
νηab. We exploit the property that any two-dimensional

metric can be represented as

gμν(x) = �2(x)ημν (5)

with the zweibein fields expressed as eaμ = �δaμ, eμ
a =

�−1δ
μ
a and � being the conformal factor. Following [29]

we write down the action for the generalized Sine–Gordon
model after bosonization:

ACSG =
∫

dx dt
√−g

[
1

2
gμν∂μφ∂νφ + α

β2�(x)
cos(βφ)

]

(6)
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or its equivalent form, (to be used subsequently in this work),

ACSG =
∫

dx dt

[
1

2
ηab∂aφ∂bφ +

(
α

β2

√−g(x)

�(x)

)
cos(βφ)

]
.

(7)

In the present instance the above action turns out to be

ACSG =
∫

dx dt

[
1

2
ηab∂aφ∂bφ +

(
α

β2 �(x)

)
cos(βφ)

]
.

(8)

We use the Minkowski signature η00 = 1 = −η11. This
is the generalized Sine–Gordon model with position depen-
dent coupling. M(x), the effective mass of φ, is given by
α�(x) = (

M(x)c
h̄ )2). (For a physical understanding of this

generalization see [29]). The soliton solutions of the con-
ventional (constant coupling) Sine–Gordon model are well
studied and it should be possible to extend them for the posi-
tion dependent interacting case, at least in a perturbative
framework. Finally note that in flat spacetime the relation
α/β2 = m′ ∝ m, the Thirring fermion mass, holds. The
equation of motion follows:

ηab∂a∂bφ +
(

α

β
�(x)

)
sin(βφ) = 0. (9)

4 Non-relativistic limit and Schrodinger equation

Let us consider a non-relativistic reduction of (7) via the
substitution,

φ = 1√
2cE0

(e−i E0t/h̄ψ + ei E0t/h̄ψ∗), (10)

where E0 = Mc2 is the rest energy. Upon substitution of
(10) the terms in (7) reduce to,

φ∗φ = φ2 ≈ ψ∗ψ
cE0

, (∂xφ)2 ≈ ∂xψ
∗∂xψ

cE0
, φ̇2

≈ 1

cE0

[
E2

0

h̄2 ψ∗ψ + i
E0

h̄
(ψ̇ψ∗ − ψψ̇∗)

]
, (11)

where, as it is customary in non-relativistic limit (see eg.
[31]), we have dropped terms quadratic in time-derivatives
and terms having time variation ∼ exp(±2i E0t/h̄).

Since this approximation constitutes an important aspect
of our analysis let us elaborate on it a little to understand
its physical implication. One may expect that in the non-
relativistic limit, fluctuations of a field, oscillating rapidly
on time scales �t large compared to inverse rest energy (or
effective mass M of the scalar field) average to zero, i.e.

when �t >> M−1. On the other hand, a careful and sys-
tematic analysis by [31–33] (see also [34,35]) shows that
due to nonlinear self-couplings, the rapidly oscillating terms
can act as effective backreaction on the dominant, slowly
varying component of the nonrelativistic field. Looking at it
from path integral perspective, removal of the fast oscillat-
ing terms is equivalent to integrating out the high-frequency
components of a field. We emphasize that for our purpose
the above arguments are adequate since we are interested
in deriving non-relativistic low energy soliton solutions and
neglect back reaction effects. Thus we recover the correct
non-relativistic action,

ANRCSG =
∫

dx dt

[
1

2cE0

{
1

c2

(
E2

0

h̄2 ψ∗ψ

+i
E0

h̄
(ψ̇ψ∗ − ψψ̇∗)

)
− (∂xψ

∗∂xψ)

}

+ α�

β2 cos

(
β

√
ψ∗ψ
cE0

)]
. (12)

It needs to be stressed that the origin of the ambiguity in
developing non-relativistic limit for a real scalar field the-
ory and its resolution, that is to derive the above action in a
rigorous way is elaborated in [36].1

A straightforward variation ofψ∗ generates the (Schrodinger)
equation of motion for ψ ,

i h̄ψ̇ = − h̄2

2(E0/c2)
∂2
xψ − E0

2
ψ

+αh̄2c3

2β

�√
cE0ψ∗ψ

sin

(
β

√
ψ∗ψ
cE0

)
ψ

= − h̄2

2M
∂2
xψ − Mc2

2

×
{

1 − β�

√
Mc

ψ∗ψ
sin

(
β

√
ψ∗ψ
Mc

)}
ψ = 0.

(13)

This is a very complicated form of non-linear Schrodinger
equation. We will study a truncated version of it following

1 As argued by the authors, the fact the transformation (10) yields
the correct non-relativistic (Schroedinger) equation but reproduces the
non-relativistic action modulo fast oscillating contributions might be
because the complexification of φ to ψ in effect doubles the degrees
of freedom and introduces an additional global U (1) gauge invariance
(leading to conserved ψ particle number). Furthermore these authors
have shown that a mathematically consistent way to generate the non-
relativistic Scroedinger theory from real Klein-Gordon theory is to
develop the latter in light-cone framework in one dimension higher and
subsequently obtain the former via a mapping of the field variables, that
is similar to (10 but without complexification). In fact with this map-
ping the full set of conformal generators of the Schroedinger theory are
recovered from relativistic conformal generators.

123



980 Page 4 of 6 Eur. Phys. J. C (2019) 79 :980

an expansion in powers of β up to O(β2). Expansion of the
sin-function yields

sin(β

√
ψ∗ψ
Mc

) ≈
(

β

√
ψ∗ψ
Mc

)
− 1

6

(
β

√
ψ∗ψ
Mc

)3

.

This considerably simplifies the Schrodinger equation (up to
O(β2)) leading to

i h̄ψ̇ = − h̄2

2M
∂2
xψ − β2

12c
(ψ∗ψ)ψ. (14)

Note that, similarly to the free massive Klein–Gordon field φ

in flat spacetime in the non-relativistic limit, the term linear
in ψ in (14) cancels out in curved spacetime as well.

One point might require some clarification. It appears that
a similar looking equation of motion as (14) could have been
obtained directly from the original fermionic Thirring model
(4). But one has to keep in mind that classical limit of the
Thirring fermion field are anticommuting and their coherent
collection as soliton is not possible due to Pauli exclusion
principle (unlike the boson field where coherent collection
of boson particles behave as classical wave). In fact the Sine–
Gordon soliton, (or its non-relativistic reduction to Kerr soli-
ton), obtained after bosonozation has no direct connection
with the basic fermionic Thirring field since the Mandel-
stam construction [5] explicitly shows that fermionic field is
a non-local and non-perturbative construction of the bosonic
soliton field whereas Coleman had shown [4] that the soliton
field is mapped to a composite fermionic field (see eg. [37]).
The map is given in (3).

(14) is a widely studied form of non-linear Schrodinger
equation (NLSE), known as Kerr law non-linearity, that
appears in water waves and fibre optics [30] (for a review
see [6]). The distinct types of soliton solutions are known
as dark, dark-singular, and bright, bright-singular and also
dark–bright and dark–bright singular solitons [30]. Hence the
curved spacetime bosonozation along with a non-relativistic
reduction has revealed a duality between massive Thirring
model fermion in curved spacetime and optical soliton of
Kerr NLSE. In the present work we will explicitly consider
the bright optical soliton as an example.

A generic soliton solution is given by

ψ(x, t) = u(ξ)ei�(x,t); ξ = λ(x + vt), � = −kx + ωt

(15)

where v and λ respectively represent velocity and inverse
width of the soliton with k, ω being the wave number and
frequency. Explicit solution for the bright optical soliton is
given by

ψ(x, t) = B√
h̄
sech

[
± B√

c

√
ν

2μ
(x + 2μkt)

]

×e
i
{
−kx+ 1

2

(
−2μk2+ν B2

c

)
t+θ

}
(16)

where the parameters are

μ = h̄

2M
, ν = β

12ch̄
(17)

and the inverse soliton (effective) width � and dispersion
relation are

� = B

√
ν

2cμ
, ω = 1

2

(
−2μk2 + B2ν

c

)
. (18)

B, θ are fixed by initial conditions. It can be checked that �

and ω have dimensions of length−1 and t ime−1 respectively.

5 Semi-classical gravity

So far we have not specified the metric of our curved space-
time. It is well-known that all two-dimensional metrics are
conformally flat which reduces the Einstein tensor to van-
ish identically. However, there are interesting modifications
of Einstein gravity and the one we will consider here is
semiclassical gravity in 1 + 1-dimensions for a static point
source [38]. Originally formulated by Jackiw and by Teitel-
boim [39–41], this model has created a lot of interest very
recently due to its relevance in the context of quantum com-
plexity conjecture [42] and its connection to Sachdev–Ye–
Kitaev model [43]. In two dimensions Einstein gravity action
is topological in nature and does not generate a dynamical
theory as the Einstein tensor vanished identically. Thus the
simplest non-trivial gravity-like theory in two dimensions is
provided by the Jackiw–Teitelboim formulation of gravity
that exhibit black hole solutions. In this model, in a mod-
ified Einstein equation the Ricci scalar is directly equated
with the trace of energy–momentum tensor (and cosmolog-
ical constant).

The metric is given by

gμν(x) = diag{ f (x),− f −1(x)},
f (x) = 2GM0

c2 |x | + ε = kef f |x | + ε (19)

where ke f f = 2GM0/c2, M0 denotes the mass of the point
source and ε = 1 or ε = −1 refers to a naked singu-
larity or a black hole horizon respectively. From 1 + 1-
dimensional Newton’s law the dimension of G is [G] =
length/(mass time2) [3,38]. The conformal factor � = f
and for singularity with horizon, i.e. black hole, we have
assumed x to be positive since in one spatial dimension par-
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ticles can not cross the singularity. Furthermore, we also
assumed that x is away from the horizon.

6 Connecting with original fermion (Thirring) model

Armed with the bosonization dictionary (3), the relation (10)
and finally the solution (16– 18), we can retrace our path to
get an approximate behavior of the fermion conserved current
jμ as given in (1). φ is given by

φ(x, t) = 2B√
2cE0

sech

[
B

√
ν

2cμ
(x + 2μkt)

]

×cos

{
−kx + 1

2

(
−2μk2 + ν

B2

c
− 2

E0

h̄

)
t + θ

}
.

(20)

Exploiting (3) we recover the fermion density and current
profiles,

j0 = − β

2π
∂xφ; j x = β

2π
φ̇. (21)

Explicit expression for j0 is given by,

j0 = β

2π

2B√
2cE0

sech

(
B

√
ν

2c
(x + 2μkt)

)
⎡
⎣2Bαke f f

c2

√
νμ3

2cμ

( x
2

− μkt
)
tanh

(
B

√
ν

2cμ
(x + 2μkt)

)

cos{−kx + 1

2

(
−2μk2 + ν

B2

c
− 2

E0

h̄

)
t + θ}

−
(
k − 2αke f f k2μ3

c2

)
sin{−kx

+1

2

(
−2μk2 + ν

B2

c
− 2

E0

h̄

)
t + θ}

]
. (22)

These fermion densities in the curved spacetime Thirring
model, obtained from the optical solitons where the bosoniza-
tion duality with the (Kerr non-linear) NLS model was
exploited, constitute our major result.

7 Discussion

To summarize, we have shown a duality in 1+1-dimensions,
between massive Thirring model in curved spacetime (in
particular in the p resence of a black hole in semi-classical
gravity) and optical solitons in Kerr non-linear models. The
fermion model is mapped on to a sine-gordon model in curved
spacetime via bosonization and the latter, in non-relativistic
limit reproduces the optical soliton.

Open problems (i) Our results, strictly speaking, are valid
in the lowest order of approximation since we have used

the same dictionary between fermion and boson degrees of
freedom that is rigorously true in flat spacetime. In [29] only
the mapping between coupling constants of the two models
is mentioned.
(ii) The duality with the optical soliton model is demonstrated
only in a truncated model.

Future directions The bosonization dictionary needs to be
extended in the curved spacetime. The duality with the Sine–
Gordon model in curved spacetime, that appeared in an inter-
mediate step requires further study.

It will be interesting if some correspondence between the
present result and the quantum mechanical equivalence with
the Rabi model [3] can be established. The last point will
be relevant in a possible experimental setup that can test the
present results.

One can also consider other forms of metric such as a
“mock” Schwarzschild metric that is structurally same as the
3 + 1-dimensional Schwarzschild metric but indeed, is not
a solution of the 1 + 1-dimensional Einstein equation. This
form of metric has been used in curved spacetime bosoniza-
tion in [44]. In this case the situation becomes more compli-
cated since the conformal factor will be x-dependent. This
will make the non-relativistic reduction tricky and will lead
to an inhomogeneous form of Kerr nonlinearity.

Lastly, there exist approximate bosonization schemes in
2 + 1-dimensions and it would be very interesting to extend
the present work in higher (at least in 2 + 1) dimensions.

DataAvailability Statement This manuscript has no associated data or
the data will not be deposited. [Authors’ comment: This is a theoretical
study and no experimental data has been listed.]
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