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ABSTRACT A novel open set classifier is presented in this work, where the neighborhood of a test
instance is determined using the principles of Reverse k-nearest neighbors (RkNN). The RkNN count of
an instance can have any non-negative value less or equal to the size of the training set. While dealing
with an open dataset, consisting of known and unknown classes, the zero count can provide a possible
solution for detecting the unknown class. Positive RkNN count along with the nearest RkNN distance
information are used to determine the known class classifications. Experiments are carried out on ten real
world datasets, with various openness values on five state-of-the-art open set learners and the proposed
scheme. Their performance is measured on three evaluating metrics namely accuracy, average F1 over
known and unknown classes, and Known class F1. Empirical results indicate comparable to superior
performance delivered by the proposed method over the state-of-the-art approaches on all but one dataset.

INDEX TERMS Open set classification, unknown class detection, known class classification, reverse
nearest neighborhood

I. INTRODUCTION
A conventional classification task aims to assign the instances
to any one of the known classes whereas unknown class
detection deals with recognition of the instances belonging to
unknown classes in addition to the known ones. An unknown
class is discrepated from the known classes on the basis
of the non-availability of its (unknown class’s) instances
during the training phase. Though classification and detection
are performed simultaneously by humans, machines often
fail to accomplish the latter efficaciously. Perception and
consequent detection of unknowns pose a serious challenge
for the machine, which is designed to operate in a ’closed’
world. Classifier design and presumptions made by us pri-
marily account for such a disparity. We grow and learn in
an unknown world with an incrementally growing known
subspace whereas our classifiers are trained in a ’closed’
setting of known distributions and classes. Traditionally, it
is considered ideal when the training set and the test set
have as similar distributions as possible. On assuming the
above, a classifier is forced to restrict its prediction into the
set of training classes. While predicting a test set consisting
of seen and unseen class instances, the unseen instances get
camouflaged as seen instances and thus get misclassified.

The above mentioned problems can be generalized as
follows. At the training phase we have instances belonging
to any one of the c possible classes where c ≥ 1. Unlike

regular classification, during testing the instances can be a
member of any one of the c + u classes, u ≥ 1, the c
known classes are seen during the training as well as test
phase while the remaining u classes which constitute the set
of unknown class/es appear in the test phase only. Before
proceeding with further details, we should distinguish an
open world recognition from anomaly detection and outlier
detection. While dealing with the latter, one has to detect
the rare events or instances which deviate from the available
population. In an open set scenario, we have an universe.
During training, we are provided information about only a
few aspects (known classes) of the universe but in the test
phase we have to classify what we have seen before (known
classes) and detect the ones that that we have not encountered
earlier (unknown classes). We may also have some classes
which we do not encounter in either training or test phases.
Openness of a dataset is the degree of unknownness in
the dataset. For quantifying this characteristic the following
definition is provided by [1].

Openness = 1− 2

√
2 ∗ Training classes

Target classes + Test classes

Target class consists of all the training and test classes as
well as the leftover unknown classes that do not participate
in the training and testing. The goal is to predict the known
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class correctly along with recognition and prediction of the
unknown class test instances. In practical scenario, we cannot
really quantify the degree of openness because the unknown
remains unknown.

Extant classifiers predict ’closed’ class-memberships in
terms of the known classes only. A true open set solution has
to possess the capability of saying ’no’ or ’unknown’ when a
test point is coming from an unknown class. In this work, we
attempt to answer this by raising a simple question. Instead
of querying a test instance p about its nearest neighbors in
a given search space, we query about the reverse nearest
neighbors of p. Reverse k-nearest neighbors of an instance p
are all those points in a given search space whose k-nearest
neighborhood contains p. When n is the total number of
training points, p’s RkNN count can be anything between
n and 0. When all the instances in search space has p as
one of its k-NN, R-kNN count of p is n and it indicates
sufficient belongingness of p to the given search space. On
the contrary, when p does not lie in any point’s neighbor-
hood, it indicates significant disharmony between p and all
others members of the search space. The latter situation is
our motivation for rejecting and unfolding the prediction
into the unknown class. In this paper, we present a novel
reverse k-nearest based classification scheme which performs
simultaneous classification into the known classes as well
as to the unknown class. The key aspect of our work is the
simplicity of the scheme. We do not require to provide any
information other than the training or known class instances
and their respective class labels. The proposed scheme does
not require any distance based thresholding for demarcation
of the known and unknown spaces, the only user-modulated
parameter is neighborhood size k. In the next section, we
present the literature review.

II. OPEN SET CLASSIFICATION
A closed set classifier makes it’s prediction within the set of
classes that it encounters in the training phase. It assumes that
all classes of the test data (queries) were well represented
at the training phase. Closed set classifiers, mostly built on
Bayesian Optimal Posterior Probability model assumes that a
fixed set of classes shares the real space and it (the classifier)
has to predict to any of these classes according to the class
boundaries. If the number of classes is c, it computes P(Cj |x)
for j = 1, 2, . . . , c and assigns the query instance to the class
i which gives maximum value of P(Ci|x), i = 1, 2, . . . , c.

Open set classification is a type of classification problem
where an instance belonging to the unknown class appears
at the test phase. Unknown class denotes a class which had
zero or no representation at the training time. An open set
classifier can encounter instances from such unrepresented
class/es at the test phase and should predict them as unknown
instead of classifying them into the known classes. Open set
classification is different from anomaly detection as well as
incremental learning. In incremental learning, the scheme
is to add the newly encountered classes to the database of
seen classes on encountering it’s instance. On the contrary,

in open set classification it is not desirable for us to add the
unknown/ unrepresented classes in the seen domain. What is
unknown should remain unknown but should be recognized
as unknown. Anomaly detection is a task in which a a rare
event or observation like outliers is identified as different
from the regular ones. In anomaly detection, we do not
need to discriminate the known classes. Unlike anomaly
detection, in open set classification, the classifier does not
make any assumption about the cardinalities of the unknown/
unknowns, no information is available about the unknowns
at the training time (as well as the test time). The problem of
open set classification requires us to have provision for the
unknown and unrepresented class besides discriminating be-
tween and correctly predicting the known classes. In an effi-
cient open set classifier, two of these characteristics should be
consequential of the scheme. Reverse nearest neighborhood
provides an elegant way of solving these two issues simulta-
neously. Our scheme based on reverse nearest neighborhood
principles is presented in Section V. We discuss the extant
works on open set classification and the machine learning
applications of reverse nearest neighbor principles in the next
section.

III. LITERATURE REVIEW
This work deals with open set classification using the prin-
ciples of reverse nearest neighborhood. Reverse k-nearest
neighbor (RkNN) principle has been used in various appli-
cations but RkNN based classification has not been imple-
mented or addressed in any existing piece of work so far.
Keeping in mind these two aspects, the literature review of
this work is presented in two contexts. First, we discuss
extant works in the field of open set classification. In the
second part, we present a brief discussion on works that have
used principles of reverse nearest neighborhood to achieve
some machine learning goals.

Open set recognition in a mixed bag of seen and unseen
classes has appealed to the data science community for
quite some time. Despite the number of works not being
numerous till date, the techniques applied are quite diverse.
[2] implemented unknown class recognition through estima-
tion of prior probability of the known classes and posterior
probabilities for the known as well as unknown classes. One
class classifiers which try to model a class only through its
positive instances has been one of the foremost solutions to
deal with open world problem. Though it is sufficient to deal
with a setup having one known class and the rest as unknown
class, the need for more refined scheme which can tackle two
or more known classes along with the unknown is natural. [1]
addressed this issue by implementing open set recognition
in the context of two known and the remaining as unknown
class. They modified the conventional SVM for this. Be-
sides drawing a decision boundary between the two known
classes, [1] added one more hyperplane which separated the
unknown class from the known subspace. The learning of the
classifier model followed by incorporating Compact Abating
Probability (CAP) is another solution. An amalgamation of
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TABLE 1: Categorization of different problems

Task Objective Training Data Prediction of test data

Closed set classification Discrimination between the classes Data from all classes
To any one of

the existing classes

Anomaly Detection Detecting abnormal data like outlier
Adequate normal class data,

few outliers
Classification as outlier-

yes or no

Incremental Learning
Dynamic classifier

modeling in a changing world
Adequate and sequential

training and test data

To any one of
the existing classes

as well as
classifier updation

Open set Recognition Discrimination between known classes
and identifying unknown class instances

Data from all
known classes only

To any one of
the known class

or to the
unknown class

the extreme value theory and the probabilistic CAP model
is implemented in [3] to classify the instances from the
known class/es and subsequently recognize the unknowns.
CAP model considers a decreasing confidence of class mem-
bership as one moves away from a known class instance into
the unmarked space. Regions beyond a thresholded radius are
subsequently categorized as the unknown or open space. In
[4], a posterior probability estimator is implemented for each
training class. A test instance is predicted into a known class
only if the maximum probability surpasses the threshold. If
none is found, the point is recognized as unknown. Distri-
bution learning of the known classes through Extreme Value
Theory (EVT) and incremental learning are incorporated in
[5] to implement open set classification. Object detection
under openset constraints are solved using drop-out sampling
approach in [6].

A few recent schema have incorporated neural networks to
recognize samples from unseen classes along with classifica-
tion of samples into seen or known classes. The scheme by
[7] is based on an ensemble of Convolutional Neural Network
with a provision for open set recognition. It separates plant
images from unknown non-plant images. Open set recogni-
tion through weightless neural network has been explored
in [8]. In [9], a neural network based classifier detects the
unknown samples through comparison and computation of
the similarity between the unknown data and the stored or
bounded knowledge. [10] on the other hand proposed a the-
oretically sound method to estimate the ’sampling window’
of the training data. Samples generated from regions outside
the sampling window are used to represent the unknown
world (class). They have trained a neural network to learn the
known and unknown classes. In [11], Generative Adversarial
Network (GAN) based approach is to separate the differential
identity components of face to generate an-identity preserv-
ing open set face synthesizer.

[12] has tweaked traditional k-NN based classifier to
facilitate open set recognition. It has proposed two schema. In
the first variant, an instance is classified as unknown on non-
agreement in class labels of its first two neighbors, agreement

assigns the instance to its first (as well second) neighbor’s
class. The second considers looks at the distances of the
test instance’s from its two nearest neighbors belonging to
different classes and calculates their ratio (nearer/ farther).
If the ratio is beyond a threshold, the instance is classified
as unknown and vice versa. [13] has employed a data fu-
sion technique by integrating open-set graph-based optimum-
path forest (OSOPF) classifier with genetic programming
(GP) and majority voting fusion techniques for open set
recognition. [14] explores the technique of classification-
reconstruction learning for open set recognition.

Reverse nearest neighborhood might just seem a flip side
of the k-nearest neighborhood, but it has been used to solve
a number of data mining subtasks. Outlier detection in an
unsupervised context and in data streams is implemented
using reverse-nearest neighborhood by [15] and [16] respec-
tively. Efficient reverse nearest search in metric spaces is
achieved by [17]. [18] explored reverse nearest neighbor
principles for protein information mining in bioinformatics.
Problems on spatial data search is also addressed by the
same in [19]. Reverse-nearest neighbor based algorithms
have solved spatio-temporal query and range queries in [20].
A work by [21] has implemented data clustering algorithm
via RkNN. RkNN explores the locality of the instances to
obtain meaningful data mining. In recent years, the tech-
niques of local information exploration, feature embedding
and lower rank and sparse subspace recovery have been used
as a backbone in a number of diversified domains. In [22],
a technique of adaptive embedded label propagation with
weight learning is used for classification of real-world image
datasets. For efficient classification of images, [23] integrates
incorporation of embedded low-rank and sparse principal
features with feature coding error and classification error.
[24] uses analysis-based trained dictionary learning model
for retrieval of query images. [25] is another important work
on the same context. It introduces a structured and scalable
dictionary learning framework to handle image analysis.

A technical elaboration of the backbone of our work, the
reverse-nearest neighbor principles is presented in the next
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section.

IV. REVERSE NEAREST NEIGHBORHOOD
Definition 1: Given a set of instances X = {x1,x2, . . . ,xn}
(X ⊂ IRN ) and a point p (p ∈ IRN ), a Reverse Nearest
Neighbor query concerning p in search space X retrieves all
the points xi ∈ X that have p as their nearest neighbor.
Thus, a Reverse k-Nearest Neighbor (RkNN) search returns
all those points xi ∈ X( i=1, 2, . . . , n) whose k-nearest
neighborhood contain p.

Extant neighborhood estimators estimate the neighbor-
hood of a query instance p through the distribution of the
neighboring instances around p. Neighborhood demarcation
is made via a surrounding hypersphere or through the en-
compassment of a fixed number of nearest instances around
the query point. They do not take into account the locale
of the query instance p in the neighborhood of the other
search points. Reverse k-nearest neighborhood realizes the
neighborhood paradigm in the latter light. To obtain reverse
nearest neighbors of a query point p, all points in a given
search space are queried about their k-nearest neighbors to
find if p is one of them. It is interesting to note that unlike
k-NN (where a query point has exactly k neighbors), the
number of RkNNs of query instance p can be anything
between 0 and n (the search space cardinality). Depending on
the data distribution, a query instance p can remain absent
from the k-nearest neighborhood of all the instances in the
training data, subsequently the RkNN count of p would be
zero, if distance(p,xi) >distance of xi from its kth-nearest
neighbor, ∀i. The other extreme case arises when the query
point p has the RkNN count of n, the size of search space
by virtue of its presence within the k-nearest neighborhood
of all the instances in the search space. 0 ≤ RkNN count
≤ n is the possible range of RkNN values. For p, its RkNNs
constitute its neighborhood in the given search space X. More
the RkNN count of p in X, more is its agreement with the in-
stances in X. A zero RkNN cardinality indicates a significant
disharmony between the query point p and the instances in
the training set, and it will be fair to assume that p comes
from an entirely different distribution. This is our principal
motivation for predicting the unknown class instances (along
with the usual prediction for the known classes) in a mixed
bag of known and unknown class instances.

A. KNOWN AND UNKNOWN SPACE MODULATION
According to our scheme, a region of positive RkNN count
constitutes the known subspace (subspace covered by the
known classes). We have a search space X (as defined in
the previous subsection) and a query instance p. Let dk(xi)
be the distance of xi from its kth nearest neighbor in the
given search space X (excluding itself). A hypersphere Skxi

of radius dk(xi), centered at xi is assumed as the kth-
nearest neighborhood of xi. Skxi constitutes the known space
corresponding to instance xi. If p lies inside Skxi , xi becomes
RkNN of p. Let d(p,xi) be the distance between p and xi.
p can lie within Skxi if dk(xi) > d(p,xi). Let S be the

subspace that is covered by the known class.
S =

⋃
xi∈X Skxi .

If xi is a vector in IRN , then S is a subset of IRN . Here, S
implicitly defines the sampling window of the training data
and hence can be viewed as defining the boundary of the
known classes. The volume of Skxi or the known subspace
spanned by xi is dependent on dk(xi). In Figure 1, we
scatter-plot 100 points each from two Gaussian distributions
N1(µ1,Σ1) and N2(µ2,Σ2) where µ1 = [50, 50], µ2 =
[20, 15], Σ1 = ( 49 0

0 49 ) and Σ2 = ( 9 0
0 9 ). The points of N1

are labeled in red while the ones from N2 are labeled in blue.
The kth nearest neighbor distance or dk(xi) for points in N1

are usually greater than that of points in N2. Accordingly, the
points from N1 spans a larger volume of known space than
that of N2. Thus, the RkNN gives an automatic modulation
of the known class spaces depending on the local distribution
of the training data points. In Figure 1, the spaces marked
with yellow color corresponds to the unknown region. It is
auto-adaptive to the class boundaries which vary from class
to class. This is desirable property while dealing with variable
data distributions.

B. PRINCIPLES OF REVERSE NEAREST
NEIGHBORHOOD AND CLASSIFICATION
Mathematically, the principles of reverse-nearest neighbor-
hood is another way of quantifying the neighborhood of the
points. But reverse k-nearest neighbor principles have not
been used for handling problems of classification. k-nearest
neighborhood principles has a framework of classifying test
data points. In k-nearest neighborhood based classifier, the
confidence of the contending classes is calculated from the
class membership of the k nearest neighbors. A test point is
likely to belong to a class which has the highest number of
it’s (test point’s) neighbors. The working principles of reverse
k-nearest neighborhood is analogous to that of k-nearest
neighbor’s. We can easily extend a similar classification
protocol using reverse nearest neighborhood. For a certain
k value, we can find the reverse k-nearest neighbors of a
test point p and classify p to the class with highest number
of reverse nearest neighbors. It is indeed true that getting
an reverse nearest neighborhood is also possible. A RkNN
based classifier has to possess proper strategies for handling
the zero neighborhood count according to the devoir of the
problem. In our case, the zero RkNN count allows us to solve
the issue of open set recognition in a natural manner, hence
we allow it as it is in our scheme.

The approach and its algorithm is elaborated in the next
section.

V. PROPOSED WORK
A. APPROACH
While classifying a test instance, classifiers operating on
principles of density estimation predict the class having the
highest density estimate (that is the class with the highest
number of neighbors) as the test class. Now, let us assess their
potential to address an unknown class classification task. For

4 VOLUME 4, 2016



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2019.2963471, IEEE Access

Author et al.: Payel Sadhukhan

FIGURE 1: This figure shows known-unknown subspace for a toy example.
Red points and blue points denote two different known classes. Let red points and blue points denote class 1 and class 2
respectively. Class 1 points come from a Gaussian distribution with µ = [50, 50] and Σ = ( 49 0

0 49 ). Similarly, Class 2 come
from a Gaussian distribution with µ = [20, 15] and Σ = ( 9 0

0 9 ). 100 points from each of these classes are shown in the figures.
White space denotes the known subspace and the yellow colored region denotes the unknown subspace. It can be noted that
spread of known subspace around each class increases with the sparsity of the distribution. Class 2, being a dense class with
lower value of sigma spans a smaller area representing the known subspace. On the other hand, known space volume around
class 1 points is high since the relative distribution of the points is sparser. 1 Fig A and Fig B shows the known-unknown
subspace delimitation at k = 5 and k = 10 respectively for the same set of data points. It can be noted that the known space
volume increases with increasing the k value. At k value 10, known subspaces of the two classes expand and we get an overlap
between the two.

a window based classification paradigm [26], the number of
neighbors inside the window volume can vary from zero to
maximum cardinality of the search space. Though a zero
neighbor count can be used for unknown class detection,
when the density distribution is highly skewed, a single
volume threshold is not expected to work well across the
entire dataset. In addition to this, the volume thresholding is
not automatic and needs empirical and manual modulations.
In k-NN based classification motivated by [27], the k-nearest
neighbors of a query point are searched in the training space.
Consequently, k-NN classifier can predict only one of the
known classes. There is no provision for unknown class de-
tection in this scheme unless some thresholding is involved.

An efficient neighborhood based solution of open set
detection should detect test instances which falls into zero
neighborhood zones of a given known space and subse-
quently reject them as unknown class instances. On a similar
note, a positive neighbor count of a test instance indicates
a finite known class membership and should be predicted
to a class from the training instances. It is desirable that
both these tasks (unknown class rejection and known class
classification) should be consequential of the scheme and
without any thresholding. The scheme should be uniform as
well as robust to non-uniform class distributions in a dataset.

In order to design a scheme satisfying the said requirements,
we propose a neighborhood based classifier where the neigh-
borhood definition is a bit different from the one assumed in
the above paragraph. Reverse k-nearest neighbors (RkNN) of
a query instance p is searched in the training space X. When
the RkNN count of p is zero, we classify p to the unknown
class. In other words, if p ∈ SC (the complement of the
known subspace or sampling window, S), then p is coming
from some unknown class. When RkNN count of p is > 0,
then the class-specific membership scores are computed.
Membership score of p for a class depends on the number
of RkNNs count from that class and the distance between p
and the nearest RkNN in that class. The membership value
increases with increase in the RkNN count and a decrease in
the distance of the nearest RkNN. The instance p is assigned
to the training class with the highest membership score.

B. THE PROPOSED METHOD
We have an open instance set D, consisting of two mutually
exclusive partitions Dtr and Dte. Dtr and Dte represent the
training set and test set respectively. The respective number
of classes in Dtr and Dte are c and c+u. The extra u classes in
Dte remain unseen during the training. We consider u unseen
classes together as a single unknown class resulting in c + 1

VOLUME 4, 2016 5
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classes for the test set, Dte. Classes 1, 2, . . . , c correspond
to the known classes and c+ 1th class correspond to the
unknown class. We also assume that the neighborhood size is
a fixed positive integer k.

We will classify a test instance p ∈ Dte in IRN into any
one of the known classes 1, 2, . . . , c or to the unknown class,
c+ 1 on the basis of the training set Dtr only.

Let Dtr={(xi,yi)| 1 ≤ i ≤ n}, where xi is a training
instance vector in IRN and yi is its corresponding class
label. Hence, the number of training instances is n. The
instances in Dtr belong to the known classes only, hence their
memberships lie in {1, 2, . . . , c}. Next we provide a stepwise
description of the algorithm. Algorithm 1 depicts the same.

Step 1: We find the RkNN of p in Dtr. The outputs of the
lookup is stored in Rp(.) and Mp(.).

Rp(i) =

{
1, if xi is a RkNN of p
0, otherwise (1)

Mp(i) =

{
distance(p,xi), if xi is a RkNN of p
∞, otherwise (2)

Remarks: Rp(i) is a vector which can take only two values 0
or 1. Mp is a vector in Rn.

Step 2: Now, we obtain the class-wise RkNN statistics for
p in Np(j) and Memp(j). By ’class’ only the seen training
classes are meant. We calculate the distance of p from its
nearest RkNN in class j and store the same inNp(j). When p
does not find a RkNN in class j, p is considered unreachable
from the entire class j and Np(j) is set to ∞. Next, we
compute Memp(j). It indicates the overall membership of p
to class j. Memp(j) depends on the RkNN count from class
j as well as Np(j), the distance from the nearest RkNN of p
from class j.

Np(j) = {min(Mp(i)); i = 1, 2, . . . , n,yi = j, Rp(i) = 1}
(3)

For each class j, j = 1, 2, .., c, class membership score of
p, Memp(j) is calculated.

Memp(j) =
1

Np(j)

n∑
i

yi=j

Rp(i) (4)

Remarks : A higher value of class-specific RkNN count and
smaller distance between p and the nearest class-specific
RkNN indicates higher confidence of p to that class. A zero
RkNN count from a class results in zero confidence of the
instance to that class. Note that Memp(j) could be greater
than 1. By RkNN principles, even for the same k value, the
neighbor count of different points vary (depending on their
configurations). In such a scenario, it is difficult to adopt the
distribution of their distances (as the number of neighbors
would vary widely). So, in Memp(j), we have considered the

nearest neighbor distance from class j only.

A toy example of Memp(j) calculation: Let us have
two classes A and B. Let the test point be p. We have
the information about p’s RkNN counts and it’s respective
nearest neighbor distances from class A and class B also.
Let the RkNN count from class A and class B be 2 and 3
respectively. Let the nearest neighbor distances Np(A) and
Np(B) be 0.5 and 1 respectively.

Memp(A) = 1
0.5 × 2=4

Memp(B) = 1
1 × 3=3

This indicates the importance of nearest neighbor distance in
our scheme. Though the RkNN count from class B is higher
than that of class A, p’s class-membership to A is greater
than that of B by virtue of the smaller distance. Besides
reverse nearest neighbor configuration, the nearest neighbor’s
proximity from a class plays a decisive factor in computing
the class-memberships.

Step 3: In this step, we will classify p to any one of the
known classes 1, 2, .., c or to the unknown class on the basis
of class membership scores. Max_Mem(p) value 0 indicates
a zero RkNN count from entire set of known (training)
classes. It indicates remoteness of p from the training classes
and p is classified to the unknown class. Max_Mem(p) >
0 signifies the presence of p within some known class
space and p is assigned to the class with Max_Mem(p).
Class_prediction(p) gives the final prediction for p, it can
be the unknown class or any one of the known classes.

Max_Mem(p) = max
j

Memp(j), j = 1, 2, . . . , c (5)

Max_Mem_class(p) = argmaxj Memp(j) (6)

Class_prediction(p) =
{

unknown class , Max_Mem(p) = 0
Max_Mem_class(p), otherwise.

(7)
General Remarks:

1) Not in the neighborhood of any: Our scheme classi-
fies an instance to the unknown class only when the
instance does not possess any RkNN in the known
training space. In other words, it does not lie in the kth-
nearest neighborhood of any training instance.

2) Do we need to search the training space for each test
instance? A training instance xi ∈ Dtr can be a RkNN
of a test instance p only if d(xi,p) is less than the kth

nearest neighbor distance of xi. Here, we assume that
kth nearest neighbor search of each xi is done in the
training space only once and stored for computations in
the later stages. We conduct a single k-nearest neighbor
search of the entire training set Dtr and find the distance
of the kth nearest neighbor of each training point
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xi, , i=1,2, . . . ,n. Next, we just to need to find and
compare d(xi,p) with kth-nearest neighbor distance
of xi. If the former is lesser, xi becomes a RkNN of p
and vice versa. Hence, the RkNN lookup of the entire
test instance set requires just one k-NN search of the
training set (in context of itself).

Algorithm 1 Reverse-nearest neighborhood based classifica-
tion
Input: Training set Dtr with c known classes, Test point
p which may belong to one of the c known classes or the
unknown class (c+1).
Output: Class prediction of p.

1: Search for RkNN of p in Dtr

Rp(i) =

{
1, if xi is a RkNN of p
0, otherwise

Mp(i) =

{
distance(p,xi), if xi is a RkNN of p
∞, otherwise

2: for each class j from 1, 2, .., c do
3: Calculate Nj(p) = min(M(p,xi)), i = 1, 2, . . . , n,

yi = j, xi is a RkNN of
p

4: Calculate Memj(p) = 1
Nj(p)

n∑
i

yi=j

Rp(xi)

5: end for
6: Max_Mem(p) = max

j
Memj(p)

7: Max_Mem_class(p) = argmaxj Memj(p),
8: if Max_Mem(p)=0 then
9: Classify p as unknown (c+1).

10: else
11: Classify p to Max_Mem_class(p) (known class).
12: end if
13: End

VI. EXPERIMENTAL SETUP
In this section,we propose a setup to make a comprehensive
assessment of the proposed and competing method’s perfor-
mance on classification of the known classes and detection
of the unknown class. A brief outline on the four essentials,
namely Datasets, Comparing methods, Parameter Optimiza-
tion and Evaluating Metrics are presented in the following
subsections in order.

A. DATASETS
We have employed ten real-world multi-class datasets to
evaluate the relative efficacies of the proposed and the
comparing methods. Table 2 summarizes the basic statis-
tics of their attributes. MNIST dataset is obtained from
https://pjreddie.com/projects/mnist-in-csv/ while the source
of the remaining ones is Keel Dataset Repository [28].

MNIST dataset has 784 features and we obtain a Reduced-
MNIST version by extracting the top features whose eigen-
value value summation covers 90% feature variance. Re-
duced MNIST dataset has 79 features. We present the results
of both MNIST and Reduced MNIST datasets individually in
this work. These datasets are obtained in closed form that is
they do not possess any openness and the class information
of all the instances are known. In order to accommodate them
for the purpose of open set recognition, we have generated
open version of each dataset following the same protocol
as done by [3]. The first step is to set the cardinalities of
the known and unknown classes. For MNIST and Letter
datasets, we have followed the recommended partition (by
[3]) of 6 known, 1-4 unknown classes and 15 known, 1-11
unknown classes, respectively. For the remaining datasets,
the following protocol is adopted.

Let the non-open or regular instance set be denoted by
D. D = {(xi, yi)|,xi ∈ X, yi ∈ C}, X ⊂ IRN and C =
{c1, c2, . . . , cn}. Hence the number of classes in the dataset
is n. We randomly equi-partition D into a training set Dtr and
Dte. Dtr ∪ Dte = D and Dtr ∩ Dte = φ. We will generate
open training-test tuple (Do

tr,D
o
te) from Dtr and Dte. We will

select the sets of known classes and unknown classes,Ck and
Cu respectively from C. The instances belonging to Ck will
appear in both Do

tr and Do
te whereas the instances belonging

to the unknown class set, Cu will appear in Do
te only. The

cardinality of Ck, denoted by ck is fixed to b0.5× nc. The
cardinality of Cu, cu is varied from 1 to d0.5× ne. Here,
we describe a procedure for generating (Do

tr,D
o
te) at one

particular openness.

1) Ck = {A set of ck classes from C}.
C̄k = C − Ck.

2) For a given cu, Cu = {A set of cu classes from C̄k}.

3) Do
tr = {(xi, yi), |xi ∈ Dtr and yi ∈ Ck}.

The instances in Dtr which belong to Ck goes to the
open training set.

Dk
te = {(xi, yi), |xi ∈ Dte and yi ∈ Ck}.

Dk
te is the collection of test instances which belong to

the known class/es.

Du
te = {(xi, yi), |xi ∈ Dte and yi ∈ Cu}.

Du
te is the collection of test instances which belong

to the unknown class/es. We relabel the instances in
Du

te to the unknown class (instead of their actual class
labels).

Do
te = Dk

te ∪ Du
te.

Do
te, the open test set consists of the test instances

belonging to the known classes as well as the unknown
class.

By varying cu in step 2, we vary the openness in Do
te. In our

experiments, for each dataset, we repeat step 1 and step 2
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five times to generate 25 folds of open data (at each open-
ness). After generating the open set versions, we calculate
the openness value of each such partition using the formula
proposed in [1].
Openness = 1 − 2

√
2∗Training classes

Target classes+ Test classes . Target
class consists of all the training and test classes as well
as the leftover unknown classes that do not participate in
the training and testing. An example is illustrated below in
Openness Calculation Example.

Remarks: As said earlier, we have followed openness
generation protocol similar to the state-of-the-art methods.
We may note that the number of opennesses generated for
a dataset depends on the the number of classes it originally
has. Following this, Vehicle, a dataset with 4 classes has
2 openness values (0.244 and 0.293) while Texture, a 11
class dataset has six openness values in the range 0.233-
0.326. Refer to the openness calculation formula stated in
Introduction.

Openness calculation example: Let us consider Derma-
tology dataset which has 6 classes. The number of target class
for this dataset is always 6. Following the above-mentioned
protocol, we have 3 known classes and we will have 1,2 or 3
unknown classes at each stage.

3 known classes, 1 unknown class: Number of training
classes=3. Number of test classes (known+unknown)= 4.
Number of target classes=6. Following formula, openness
=0.225.

3 known classes, 2 unknown class: Number of training
classes=3. Number of test classes (known +unknown) = 5.
Number of target classes=6. Following formula, openness
=0.261.

3 known classes, 1 unknown class: Number of training
classes=3. Number of test classes (known+unknown)= 6.
Number of target classes=6. Following formula, openness
=0.293.

B. PARAMETER OPTIMIZATION
Most of the open set learners, including ours involve pa-
rameters whose values have to be determined empirically.
The optimized values of these parameters are determined via
cross-validation on the training set. We carve out a cross-
validation training set, T and validation set V from Do

tr

only. For open set classification, we introduce openness in
V following the same protocol as described in the above
section. If m is the number of classes in Do

tr, we fix the
known class and unknown class cardinalities at b0.5×mc
and d0.5×me respectively.

Let us illustrate this with an example. Let there be 6 classes
and 100 instances in Do

tr. We randomly partition the Do
tr

into cross-validation training set, T and validation set, V.
Each of T and V has 50 instances. We randomly choose 3
classes as known classes and the remaining 3 classes fall into
the unknown class. We remove the instances from unknown
classes in the training set T. In the validation set, instances
from the known classes as well unknown classes are present.

To optimize N parameters, we perform an N-dimensional
grid search on the training set validation set tuple (T,V)
and select the parameter value/s giving the best output on
the validation set. Accuracy is used for evaluation of the
performance.

C. COMPARING METHODS

Open set recognition and classification have been accom-
plished efficaciously by a number of works in the past few
years. For comparative assessment of performance of our
scheme, we have selected five methods which are briefly
described next.

• 1-vs-set, [1]: It is a baseline method in the field of open
set recognition. The recommended version of "1-vs-all"
is chosen for comparison.

• WSVM, [3]: This is possibly the best performing open
set learner so far. But LETTER and MNIST datasets are
run on the recommended values of C = 2, γ = 2,δ =
0.1 and C = 2, γ = 0.03125, δ = 0.1 respectively. For
the remaining datasets, γ and C values are selected via
two-dimensional grid search. As recommended in the
paper, threshold probability, P is set to 0.5*openness.

• Multi-class probability of inclusion, PI-SVM [4]: Prob-
ability of inclusion or into the class probability is the
foundation of this work. ’1-vs-rest’ binary SVM with
threshold probability, P value 0.5*openness is consid-
ered for execution. Similar to [3], tuning of γ and C
are required for this scheme. LETTER and MNIST
datasets are run on the recommended values of C = 2,
γ = 2,δ = 0.1 and C = 2, γ = 0.03125, δ = 0.1
respectively. For the remaining datasets, parameters are
fixed through grid search.

Nearest neighbor distance-ratio open set classifier by
[12] has addressed open set recognition through a
tweaked knn classifier. They proposed two slightly dif-
ferent schema which stand apart from each other in
terms of performance. Since the interest of this work
lies with classification through nearest neighborhood,
we consider both the versions for comparison.

• Nearest neighbor distance-ratio open set classifier (
OSNN-CV) : An instance is classified as unknown on
getting a class mismatch between its two nearest neigh-
bors. No user defined parameter is involved.

• Nearest neighbor distance-ratio open set classifier
(OSNN-NDR): The distance between two nearest neigh-
bors belonging to different classes are noted for a test
instance. If the ratio of the distance (nearer to farther)
is sufficiently large, the instance is classified as un-
known. The ratio of the two distances (nearer/ farther)
is computed and compared with a threshold, namely
T. For unknown class classification, T threshold range
suggested by the authors is between 0.5 and 1. Through
parameter optimization, a single value is selected from
0.5, 0.55, . . . , 1 for each dataset.
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TABLE 2: Description of datasets. N, f and C denote the number of instances, features and total number of classes in order. ck
and cu denote the cardinalities of the known and unknown classes respectively.

Datasets N f C ck cu
Dermatology 358 34 6 3 1-3

Letter 20000 16 26 15 1-11
MNIST 70000 784 10 6 1-4

Reduced-MNIST 70000 79 10 6 1-4
Optdigits 5620 64 10 5 1-5
Penbased 10992 16 10 5 1-5
Segment 2310 19 7 3 1-4
Shuttle 58000 9 7 3 1-4
Texture 5500 40 11 5 1-6
Vehicle 846 18 4 2 1-2
Vowel 990 13 11 5 1-6

FIGURE 2: It depicts TP, TN, FP, FN for a toy scenario which
has 2 known classes and an unknown class. Class 1 and
class 2 It depicts TP, TN, FP, FN for a toy scenario which
has 2 known classes and an unknown class. Class 1 and
class 2 constitute the set of known classes and U denote the
unknown class. The first two diagonal elements correspond to
the correct predictions for class 1 and class 2 and belong to
the TP set. The 3rd diagonal cell corresponds to the correct
predictions for the unknown class U and hence counted as
TN. Remaining elements of row 1 and 2 corresponds to the
FPs or false predictions into the known classes. For example,
cell(2,1) counts the cases where the actual class is 1 but the
prediction has been class 2. For cell(2,U) the actual class of
the instances is unknown class U but class 2 is predicted.
Non-diagonal elements of row 3 correspond to the cases
where prediction as been made into the unknown class U but
actual class is a known class (1 or 2).

• The proposed method: The proposed scheme requires
tuning of the neighborhood k. The value of k is chosen
via cross-validation on the training set.

D. EVALUATING INDICES
In this piece of work, we deal with learners which detect
unknown class instances alongside the usual classification of
instances into one of the known classes. Accuracy, Average
F1 over known and unknown classes (AKUF1) and Known
class F1 are employed to provide insight into known class
classification as well as unknown class detection. Before
going into the details, we describe a few notations.

The class of known classes (known or training classes
taken together) is considered the positive class and the set of

classes absent during training or the unknown class is dubbed
as negative. Let the known classes set be, K = {1, 2, . . . , c}
and the unknown class label be c + 1. A true positive
prediction denotes that the classifier prediction is correct and
the actual class is any one among 1, 2, . . . , c. In a similar
fashion, a true negative is a correct prediction and the actual
class is c+ 1, the unknown class. A False positive prediction
is incorrect and the prediction is between 1 and c. There can
be two cases of a false positive prediction — true class is
the unknown class but the learner has misclassified into a
known class. The other possible case is when the true class
is some known class 1 (say) but the prediction has been made
into some other known class 3 (say). False negative denotes
that an instance from a known class has been incorrectly
classified into the unknown class. The total and individual
counts of true positive, true negative, false positive and false
negative are represented as TP, TN, FP and FN respectively.
An example is illustrated in Fig 2.

• Accuracy: For evaluating the classification performance
of a learner, accuracy is the primary choice. It measures
the fraction of correct predictions against the total num-
ber of predictions.

Accuracy =
TP + TN

TP + TN + FP + FN
(8)

Intricate details like individual class performance of a
learner cannot be deduced from accuracy alone. The
next metric is employed to address the same.

• Average F1 over known and unknown classes ( AKUF1):
In order to address the limitation of the above and pro-
vide a better glimpse of the class performances, AKUF1

is computed. F1 is measured for a single class where the
possible classes can be more than one. F1 calculates the
harmonic mean of precision and recall for the concerned
class. Below, the F1 calculation for the positive class is
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demonstrated.

Precision =
TP

TP + FP

Recall =
TP

TP + FN

F1 =
2× Precision×Recall
Precision+Recall

(9)

In the context of open set recognition, classes are
broadly classified into known and unknown and the two
are equally significant. F1 is individually calculated
on the known (positive) class as well as the unknown
(negative) class. Mean of the above two are computed
as the AKUF1 and interpreted to evaluate the overall
performance of the learners. A similar metric has been
used by [12].

• Known class F1: This particular measure estimates the
efficiency of the schemes in correct classification of the
known class instances in a mixed bag of known and
unknown instances.

VII. RESULTS AND DISCUSSION
This section of the paper is devoted to the summarization
and comparative analysis of the experimental results. Before
proceeding to the discussion, we would like to clarify the
figurative layout. The empirical results are obtained with
different openness values where the range of openness varies
across datasets depending on the number of classes. For LET-
TER and MNIST datasets, we have set the known class and
unknown cardinalities according the experimental protocol
of [3]. For a proper presentation, we have provided three
graphical layouts for each dataset, one each for three evalu-
ating metrics, namely Accuracy, Average F1 over known and
unknown classes (AKUF1) and Known class F1. Results on
AKUF1 are presented in Figure 4 to Figure 14). Figures 15-
25 and Figures 26-36 show the Accuracy and Known class
F1 plots respectively. Additionally, we have presented the
summarized results in three tables 3, 4 and 5. Each table is
dedicated to a metric and reports the number of best results
obtained by each method on each dataset. A total of 50
scenarios or opennesses have arisen for the 10 datasets and
the corresponding results are reported in the tables. In the
following three paragraphs, we discuss the comparative per-
formance of the methods on accuracy, AKUF1, and Known
class F1 in order with reference to their corresponding plots
and tables.

Accuracy is a primary choice when one has to evaluate
a classifier. Table 3 records the number and percentage
of best performance delivered by each of the comparing
methods. Out of the 50 cases, the proposed method delivers
best results on 39 scenarios (78%), followed by 6 (12%), 4
(8%) and 1 (2%) scenarios by WSVM, PI-SVM and 1-vs-
Set respectively. On MNIST and Dermatology datasets, the
proposed method achieves best result on 1 (25%) out of 4
opennesses and 1 (50%) out of 2 opennesses. On all other

datasets, performance of the proposed method is better at
more than 50% of the cases. For lower values of opennesses,
the known class/es play a key role in determining accuracy
value while the growing unknown class contributes more at
higher opennesses. From the figures, it can be seen that the
accuracy achieved by the proposed method is fairly constant
across increasing openness. This indicates the robustness of
the proposed scheme to variable opennesses. Figures 15 to
25 portray the graphical portrayal of accuracy performances
delivered by the methods against increasing openness. These
plots show the accuracy scores of the methods at different
opennesses. Let us analyze Fig 15, which corresponds to
the Dermatology dataset. At openness value 0.2257, perfor-
mance of 1-vs-Set is best among the lot, for the remaining
opennesses (openness values 0.2614 and 0.2929) the perfor-
mance of proposed method is better than all the comparing
methods. The betterment in performance by the proposed
method is more at 0.2614 than at 0.2929.

AKUF1 performance indicates a similar show. Figures 4
to 14 present the AKUF1 performance of the methods over
increasing openness. These figures plot the actual outputs
given by the proposed and comparing methods. Let us an-
alyze Fig. 4 (Dermatology dataset). It can be observed that
the performance of the proposed method lies above all others
at all three openness values. But the degree of improvement
over the other methods is more pronounced at openness
values 0.2257 and 0.2929. Similar analysis for all datasets
can be be made by consulting the remaining figures. Table
4 shows the overall statistics of best AKUF1 performance
by the methods. The proposed method delivers the best
performance on 50% or more cases for all but one dataset.Out
of the 50 cases, the proposed method wins in 40 cases (80%)
followed by 6 (12%) and 4 (8%) cases by WSVM and PI-
SVM respectively. These figures indicate the capability of the
proposed scheme in correctly predicting the known classes as
well as the unknown class.

Now, we analyze the relative capability of the proposed
method to correctly predict the known class instances or
Known class F1. In practical scenario, this metric holds
significance since its mimics the real world where we predict
known things in a known and unknown world. Table 5
records the data of best outcomes on each dataset and its
respective opennesses. Similar to the previous two measures,
the proposed method gets the major share 76% (38 out of 50)
best outcomes. Remaining 24% is shared by WSVM (8%,
4 out of 50), PI-SVM (10%, 5 out 50) and OSNN-CV (6%,
3 out of 5). Detailed known class F1 values are available in
Figures 26-36. Known class F1 performance on Dermatology
dataset is shown in Figure 26. At openness values 0.2257 and
0.2614, the proposed method performs best. PI-SVM scores
best on the remaining openness (0.2929).

Comparative results presented in the above three para-
graphs indicate the efficaciousness of the proposed scheme
in both known and unknown aspects of open set learning.
The proposed method maintains its superior performance
on datasets with lesser number of classes (Dermatology,

10 VOLUME 4, 2016



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2019.2963471, IEEE Access

Author et al.: Payel Sadhukhan

TABLE 3: Performance on Accuracy. The table gives the summary of the best performances obtained by each method on each
dataset.

Dataset (Openness)
Methods

Proposed Method 1-vs-Set WSVM PI-SVM OSNN-CV OSNN-NDR
# of Wins Win% # of Wins Win% # of Wins Win% #of Wins Win% # of Wins Win% #of Wins Win%

Dermatology (3) 2 66.67% 1 33.33% 0 0 0 0 0 0 0 0
Letter (11) 8 72.72%% 0 0 3 27.27% 0 0 0 0 0 0
MNIST (4) 1 25% 0 0 2 50% 1 25% 0 0 0 0

Optdigits (5) 4 80% 0 0 0 0 1 20% 0 0 0 0
Penbased (5) 4 80% 0 0 0 0 1 20% 0 0 0 0
Segment (4) 4 100% 0 0 0 0 0 0 0 0 0 0
Shuttle (4) 4 100% 0 0 0 0 0 0 0 0 0 0
Texture (6) 5 83.33% 0 0 1 16.67% 0 0 0 0 0 0
Vehicle (2) 1 50% 0 0 0 0 1 50% 0 0 0 0
Vowel (6) 6 100% 0 0 0 0 0 0 0 0 0 0

Total 39/50 78% 1 2% 6/50 12% 4/50 8% 0 0 0 0

TABLE 4: Performance on Average F1 over known and unknown classes (AKUF1). The table gives the summary of the best
performances obtained by each method on each dataset.

Dataset (Openness)
Methods

Proposed Method 1-vs-Set WSVM PI-SVM OSNN-CV OSNN-NDR
# of Wins Win% # of Wins Win% # of Wins Win% #of Wins Win% # of Wins Win% #of Wins Win%

Dermatology (3) 3 100% 0 0 0 0 0 0 0 0 0 0
Letter (11) 9 81.81%% 0 0 2 18.18% 0 0 0 0 0 0
MNIST (4) 0 0% 0 0 3 75% 1 25% 0 0 0 0

Optdigits (5) 4 80% 0 0 0 0 1 20% 0 0 0 0
Penbased (5) 4 80% 0 0 0 0 1 20% 0 0 0 0
Segment (4) 4 100% 0 0 0 0 0 0 0 0 0 0
Shuttle (4) 2 50% 0 0 1 25% 1 25% 0 0 0 0
Texture (6) 6 100% 0 0 0 0 0 0 0 0 0 0
Vehicle (2) 2 100% 0 0 0 0 0 0 0 0 0 0
Vowel (6) 6 100% 0 0 0 0 0 0 0 0 0 0

Total 40/50 80% 0 0 6/50 12% 4/50 8% 0 0 0 0

TABLE 5: Performance on Known class F1. The table gives the summary of the best performances obtained by each method
on each dataset.

Dataset (Openness)
Methods

Proposed Method 1-vs-Set WSVM PI-SVM OSNN-CV OSNN-NDR
# of Wins Win% # of Wins Win% # of Wins Win% #of Wins Win% # of Wins Win% #of Wins Win%

Dermatology (3) 2 66.67% 0 0 0 0 1 33.33% 0 0 0 0
Letter (11) 7 63.63%% 0 0 2 11.11% 0 0 2 18.18% 0 0
MNIST (4) 1 25% 0 0 2 50% 0 0 1 25% 0 0

Optdigits (5) 4 80% 0 0 0 0 1 20% 0 0 0 0
Penbased (5) 4 80% 0 0 0 0 1 20% 0 0 0 0
Segment (4) 4 100% 0 0 0 0 0 0 0 0 0 0
Shuttle (4) 4 100% 0 0 0 0 0 0 0 0 0 0
Texture (6) 6 100% 0 0 0 0 0 0 0 0 0 0
Vehicle (2) 0 0 0 0 0 0 2 100% 0 0 0 0
Vowel (6) 6 100% 0 0 0 0 0 0 0 0 0 0

Total 38/50 76% 0 0 4/50 8% 5/50 10% 3/50 6% 0 0

Vehicle) as well as on datasets with large number of classes
(LETTER, Vowel, Texture). The intrinsic multi-class frame-
work of the proposed scheme accounts for this robustness.

The performance of the proposed method on MNIST
dataset is not as good as compared to a couple of methods
(namely WSVM and PI-SVM). Moreover, it also shows a
deviation from it’s own (proposed method’s) performance on
the remaining datasets. We investigated the loss of perfor-
mance on MNIST dataset and our findings direct to the high-
dimensionality of this dataset. Our method is based on RkNN
principles where distance and neighborhood relations are
the only information that we cultivate for classification. Our
method suffers from curse of dimensionality at 784 features
and failed to perform as competently as on the remaining
datasets. To validate our findings, we have generated out-
puts on a reduced version of MNIST dataset. The Reduced-
MNIST version is obtained by extracting the top features

which covers 90% feature variance. Reduced MNIST dataset
has 79 features. Fig 7 shows the AKUF1 performance of
proposed and comparing methods on Reduced MNIST. It
shows that the performance of the proposed method is better
than that of all others. The results are also superior to that
of the best performing methods (WSVM and PI-SVM) on
regular MNIST (with all features) of 784 features (Refer to
Figure 6 (for MNIST) and 7 (for Reduced MNIST)). Figures
18 and 29 show the accuracy and known class F1 results
of these experiments. The results are in congruence with
AKUF1 performance.

A. REPORTING AVERAGE (OVER ALL OPENNESSES
OF A DATASET) AKUF1 RESULTS OF FIVE DATASETS
For five datasets (Dermatology, MNIST Reduced-MNIST,
Optdigits and Segment), we calculate the average of AKUF1

scores over the various openness values (of each dataset). In
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Figure 3, we plot the average AKUF1 results of the proposed
method and the five competing methods. The results indicate
the certain superiority of the proposed method over all five
comparing methods (including neighborhood based openset
classifiers OSNN-CV and OSNN-NDR) in all datasets except
MNIST.
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(a)Dermatology (b)MNIST (c)Reduced-MNIST (d)Optdigits

(e)Segment

FIGURE 3: The results indicate the certain superiority of the proposed method over all competing methods on four out of five
datasets. On MNIST dataset, the proposed method suffers from the issue of high dimensionality of features. The enhanced
performance of the proposed method on Reduced-MNIST (with reduced feature set) dataset affirms this fact.
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FIGURE 4: AKUF1 results on Dermatology on three openness values.
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FIGURE 5: AKUF1 results on Letter on eleven openness values.
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FIGURE 6: AKUF1 results on MNIST on four openness values.
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FIGURE 7: AKUF1 results on Reduced-MNIST on four openness values.
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FIGURE 8: AKUF1 results on Optdigits on five openness values.
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FIGURE 9: AKUF1 results on Penbased on five openness values.
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FIGURE 10: AKUF1 results on Segment on four openness values.
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FIGURE 11: AKUF1 results on Shuttle on four openness values.
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FIGURE 12: AKUF1 results on Texture on six openness values.
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FIGURE 13: AKUF1 results on Vehicle on two openness values.
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FIGURE 14: AKUF1 results on Vowel on six openness values.
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FIGURE 15: Accuracy results on Dermatology on three openness values.
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FIGURE 16: Accuracy results on Letter on eleven openness values.
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FIGURE 17: Accuracy results on MNIST on four openness values.
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FIGURE 18: Accuracy results on Reduced-MNIST on four openness values.
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FIGURE 19: Accuracy results on Optdigits on five openness values.
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FIGURE 20: Accuracy results on Penbased on five openness values.
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FIGURE 21: Accuracy results on Segment on four openness values.
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FIGURE 22: Accuracy results on Shuttle on four openness values.
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FIGURE 23: Accuracy results on Texture on six openness values.
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FIGURE 24: Accuracy results on Vehicle on two openness values.
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FIGURE 25: Accuracy results on Vowel on six openness values.
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FIGURE 26: F1 results on Dermatology on three openness values.
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FIGURE 27: F1 results on Letter on eleven openness values.
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FIGURE 28: F1 results on MNIST on four openness values.
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FIGURE 29: F1 results on Reduced-MNIST on four openness values.
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FIGURE 30: F1 results on Optdigits on five openness values.
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FIGURE 31: F1 results on Penbased on five openness values.
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FIGURE 32: F1 results on Segment on four openness values.
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FIGURE 33: F1 results on Shuttle on four openness values.
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FIGURE 34: F1 results on Texture on six openness values.
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B. LIMITATIONS OF THE PROPOSED SCHEME
The proposed work deals with RkNN in which distance and
neighborhood relation is the only information that is inter-
preted. Like any other distance-based scheme, our method
suffers from the curse of dimensionality at higher dimen-
sions. The same phenomenon was observed for the original
MNIST dataset with 784 features. To curb this problem, we
suggest a reduction in feature dimension of a dataset with ≥
100 features through feature extraction or selection before
proceeding with the RkNN-based learning and classifica-
tion. The improvement in performance on Reduced-MNIST
dataset ( Figures 6, 17, 28 ) over original MNIST dataset (
Figures 5, 16, 27 ) manifests the same.

VIII. EXPERIMENT ON PARAMETER TUNING
On four datasets, namely, Dermatology, Vehicle, Segment and
Vowel, we have conducted a parameter tuning experiment.
Neighborhood size ’k’ is the only tunable parameter of our
scheme. From our detailed experimental study and analysis,
we have seen that a k value in the range 2, 3, 4, 5, 6 works
well for all the datasets that we have used. Accordingly,
we have reported the accuracy results of the four mentioned
datasets across these five k values. Figures 37-40 shows the
same. It is interesting to note that a single ’k’ value may not
work well on a dataset. So, it is advisable to tune the k value
across different opennesses of a single dataset. The detailed
procedure for parameter optimization is given Section VI. B
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FIGURE 35: F1 results on Vehicle on two openness values.
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FIGURE 36: F1 results on Vowel on six openness values.
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FIGURE 37: Accuracy results on Dermatology on three openness values and varying k values.

FIGURE 38: Accuracy results on Vehicle on two openness values and varying k values.
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IX. CONCLUSION
In this paper, we have presented a novel reverse k-nearest
neighbor based classifier. The elegance of this classifier lies
with it’s innate ability to address open set classification.
RkNN based neighborhood identification does the task of un-
known class detection besides the regular known class classi-
fication naturally. Choice of k or neighborhood size is dataset
dependent and it is determined through cross-validation on
the training set. Apart from that, no thresholding or parame-
ters are involved to distinguish the known and unknown sub-
spaces. A unique attribute of the proposed scheme is that it
estimates and explores the sampling window implicitly. The
RkNN process itself adaptively adjusts the class boundaries,
depending on the local sparseness of the training data and this
contributes to the simplicity and efficiency of the scheme.
The proposed classifier also operates on an intrinsic multi-
class framework. A comprehensive empirical study affirms
the capability of the proposed scheme deliver competent to
superior performance on open set backdrop the competing
learners.
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FIGURE 39: Accuracy results on Segment on four openness values and varying k values.

FIGURE 40: Accuracy results on Vowel on six openness values and varying k values.
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