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Bivariate life distributions used to model negative dependence typically possess certain limita-

tions; in particular, the correlation coefficient takes values in a restricted subrange of [−1,0].
We construct a new bivariate life distribution to remedy this. Properties of the proposed dis-

tribution are studied. It is shown that the distribution satisfies most of the popular notions of

negative dependence prevalent in the literature. Stress–strength reliability bounds are obtained,

and parameter estimation methodology has been discussed. Performance of the estimators are

compared through a simulation study.
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1 INTRODUCTION

Bivariate and multivariate life distributions are extensively used for modelling various natural and physical phenomena in the fields of reliability

engineering (Fiondella, 2010), hydrology (Genest, Favre, Béliveau, & Jacques, 2007; Phatarford, 1976; Zhang & Singh, 2007), environmental

science (Crovelli, 1973; Gumbel & Mustafi, 1967), economics (Wrigley & Dunn, 1984), medical science (Crowder, 1985; Cui & Sun, 2004;

Hougaard, 1986), psephology (Hoyer & Mayer, 1972), and so forth. Traditionally, bivariate distributions have been proposed either by specifying

two conditional distributions or through a simple specification of one marginal and one conditional distribution. A typical mechanism of generating

bivariate distributions in recent times is by using a variety of copulas (Bairamov & Kotz, 2003; Lai & Xie, 2000; Mohtashami-Borzadaran, Amini,

& Ahmadi, 2019). The structural properties of such distributions have been studied in detail (Balakrishana & Lai, 2009, Chapters 1 and 2).

They provide details of historical developments, genesis, theoretical properties, and various areas of application of bivariate life distributions.

Interestingly, most such life distributions available in the literature are positively correlated. However, in many real-life scenarios, paired

observations of non-negative variables are negatively correlated. For example, rainfall intensity and duration are jointly modelled incorporating

their negative dependence for the study of derived flood frequency distribution (Kurothe, Goel, & Mathur, 1997). Gumbel (1960) proposed two

different bivariate exponential distributions with correlation coefficient lying in the intervals [−0.4,0] and [−0.25,0.25], respectively. Freund

(1961) proposed another bivariate extension of the exponential distribution where the lower bound of the correlation coefficient is restricted to

−1∕3. The conventional mechanism for inducing dependence between two non-negative random variables is designed to incorporate positive

association. Following similar constructions, one cannot guarantee that the resulting random variables are non-negative in nature while being

negatively dependent. In an attempt to manufacture non-negative dependent random variables, it is also not easy to ensure that the correlation

coefficient takes any value in the interval [−1,0].
Lehmann (1966) introduced various concepts of negative dependence for bivariate distributions. Later, Esary and Lehmann (1972) and

Yanagimoto (1972) developed stronger notions of bivariate negative dependence. These results related to negative dependence are useful

in deriving reliability bounds. In this context, Ghosh (1981) introduced various notions of negative dependence and discussed associated

properties in the multivariate set-up. However, only a few bivariate models satisfying such nice properties have been developed for practitioners.

Farlie-Gumble-Morgensterm (FGM) family of distributions exhibits negative dependence among the component variables in a very strong sense.

However, the correlation coefficient for this family lies within the interval [−1∕3,1∕3] (Schucany, Parr, & Boyer, 1978). Bairamov and Kotz (2000)

proposed a four-parameter extension of the FGM family with correlation coefficient that lies within the interval [−0.48,0.50]. Similarly, Bekrizadeh,
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Parham, and Zadkarmi (2012) proposed a three-parameter extension with correlation coefficient that lies within the interval [−0.5,0.43]. The

aforementioned models are based on a more general family of FGM extensions introduced by Sarmanov (1996), which fails to provide an

admissible parameter space for the dependence parameter to have closed-form bounds on the corresponding correlation coefficient. To address

this issue, Amblard and Girard (2009) proposed another extension, but its application is limited because of a singular component concentrated

on the diagonal. Some other extensions of FGM coupla are discussed in Ahn (2015) and Bekrizadeh and Jamshidi (2017). As mentioned before, it

is a challenging problem to develop a bivariate life distribution with the flexibility that the correlation coefficient takes any value in the interval

[−1,0]. The complexity of the problem increases if strong notions of negative dependence are desired in addition to the aforementioned virtue.

In this paper, we propose a negatively dependent bivariate life distribution that possesses nice closed-form expressions not only for the

joint, conditional, and marginal distributions and densities but also for the maximum likelihood estimates (MLEs) of the model parameters. Most

importantly, the correlation coefficient of the proposed distribution may take any value in the interval [−1,0]. It also exhibits various strong

notions of negative dependence available in the literature. In Section 2, we provide the genesis of the proposed distribution and its associated

properties including moments and conditional distributions. Next, we discuss various notions of negative dependence in the context of the

proposed bivariate distribution in Section 3. Section 4 provides a stress–strength reliability bound under the proposed model. In Section 5,

we provide estimation methodology for the associated parameters. An illustrative data analysis is presented in Section 6. We provide some

concluding remarks in Section 7.

2 THE BIVARIATE DISTRIBUTION

There are different methods available in the literature for the construction of bivariate life distributions. Suppose Z1, Z2, and Z3 are three

independent non-negative random variables. Then, one can generate dependent random variables by taking X = min(Z1,Z3) and Y = min(Z2,Z3).
Alternatively, a popular choice is to take X = max(Z1,Z3) and Y = max(Z2,Z3) for the same purpose. These constructions provide positively

dependent random variables. However, it does not seem feasible to incorporate negative dependence using similar mechanisms. In an attempt

to induce negative correlation, Arnold and Strauss (1988) consider both the conditional densities to be exponential and exploit the differencing

argument. In this case, the lower bound of correlation coefficient is restricted to −0.32. As discussed before, similar restrictions have been

observed for the bivariate life distributions generated by Farlie-Gumbel-Morgenstern copula. Another mechanism of generating positively

dependent random variables is to consider a pair X = Z1 + Z3 and Y = Z2 + Z3, which can be tweaked to incorporate negative dependence by

the modification X = Z1 + Z3 and Y = Z2 − Z3. Unfortunately, this does not guarantee that the resulting random variables both X and Y are

non-negative. We overcome all the above difficulties by considering the following construction.

Suppose Z1 and Z2 are independent exponential random variables with mean 1∕𝜆 and 1∕𝜇, respectively. Now, we define the paired random

variable (X,Y) as

X =Z1

and Y =eZ2−Z1 .

Using standard transformation of variables, one can obtain the joint probability density function of (X,Y) as

f(x, y) =
⎧⎪⎨⎪⎩
𝜆𝜇e−(𝜆+𝜇)xy−(1+𝜇), 0 < x < ∞,

e−x < y < ∞
0 otherwise,

(1)

and the corresponding cumulative distribution function (cdf) is given by

F(x, y) =

⎧⎪⎪⎨⎪⎪⎩
y𝜆 − e−𝜆x + 𝜆

(𝜆+𝜇)y𝜇
(

e−(𝜆+𝜇)x − y𝜆+𝜇) ,
0 < y < 1, x > − ln y,

1 − e−𝜆x − 𝜆

(𝜆+𝜇)y𝜇
(

1 − e−(𝜆+𝜇)x
)

y > 1, x > 0.

(2)

Figure 1a–c provides graphical representations of the density function (1) for three different sets of parameter choices. The characteristic

function of the above distribution is given by

Ψ(t1, t2) = 𝜆𝜇[ExpIntegralE [1 + 𝜇,−it2] + (Γ[𝜆 − it1] − Γ[𝜆 − it1,−it2])(−it2)−𝜆+it1 ]∕
[
𝜆 + 𝜇 − it1

]
,

where ExpIntegralE [n,Z] = ∫ ∞
1

e−zt

tn dt and Γ[a, z] = ∫ ∞
z ta−1e−tdt.
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FIGURE 1 Plots of the density for
different choices of 𝜆 and 𝜇: (a) density
plot for 𝜆 = 1 and 𝜇 = 5, (b) density plot
for 𝜆 = 5 and 𝜇 = 5, and (c) density plot
for 𝜆 = 5 and 𝜇 = 1

2.1 Marginal and conditional distributions

Note that the marginal distribution of X, by definition, is exponential with mean 1∕𝜆. From (1), it is easy to derive the marginal density of Y, which

is given by

fY(y) =

⎧⎪⎪⎨⎪⎪⎩
∫ ∞
−loge y 𝜆𝜇e−(𝜆+𝜇)xy−(1+𝜇) dx = 𝜆𝜇

𝜆+𝜇
y𝜆−1,

0 < y < 1
∫ ∞

0 𝜆𝜇e−(𝜆+𝜇)xy−(1+𝜇) dx = 𝜆𝜇

𝜆+𝜇
y−(𝜇+1),

1 < y < ∞.

One can directly find the marginal distribution function of Y as

FY (y) = F(∞, y) =

{
𝜇

(𝜆+𝜇)
y𝜆, 0 < y < 1,

1 − 𝜆

(𝜆+𝜇)y𝜇
, y > 1,

from (2). Now, the conditional density function of Y|X = x turns out to be

fY|X(y|x) = {
𝜇e−𝜇xy−(1+𝜇), y > e−x,

0 otherwise.

On the other hand, the conditional density of X|Y = y is as follows:

For 0 < y < 1,

fX|Y (x|y) = (𝜆 + 𝜇)e−(𝜆+𝜇)xy−(𝜆+𝜇), x > − ln y,

whereas for y > 1

fX|Y(x|y) = (𝜆 + 𝜇)e−(𝜆+𝜇)x, x > 0.
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Remark 1. For y > 1, the conditional distribution of X|Y = y is exponential with mean 1∕(𝜆 + 𝜇).

2.2 Moments and correlation

First, we provide the moments of the marginal distributions. Note that X follows exponential distribution and hence has moments of all orders

(see Johnson and Kotz, 1970, p. 498, for more details). In order to find the rth-order moment of Y, one needs to evaluate

E(Yr) =

1

∫
0

𝜆𝜇

𝜆 + 𝜇
y𝜆+r−1dy +

∞

∫
1

𝜆𝜇

𝜆 + 𝜇
yr−(𝜇+1)dy. (3)

The second integral in (3) exists if 𝜇 > r and so E(Yr) exists for all r < 𝜇, and in this case,

E(Yr) = 𝜆𝜇

(𝜆 + r)(𝜇 − r)
.

Therefore, variance of Y exists if 𝜇 > 2 and given by

Var(Y) = 𝜆𝜇(𝜆2 + 𝜇2 + 2𝜆 − 2𝜇 + 1)
(𝜆 + 2)(𝜇 − 2)(𝜆 + 1)2(𝜇 − 1)2

.

As discussed before, the main motivation for the proposed bivariate distribution is that the correlation coefficient between X and Y can take

any value in the interval [−1,0] unlike the existing negatively dependent bivariate distributions. Now, we derive the product moment correlation

coefficient of X and Y and demonstrate the aforementioned property. Using the independence of Z1 and Z2, we get

Cov(X,Y) =E(XY) − E(X)E(Y)

=E(Z1e−Z1 )E(eZ2 ) − E(Z1)E(eZ2 )E(e−Z1 ).

Because E(eZ2 ) exists for 𝜇 > 1, Cov(X,Y) is equal to 𝜇

(𝜆+1)2(1−𝜇)
for 𝜇 > 1. As mentioned before, the variance of Y exists for 𝜇 > 2; hence, the

product moment correlation coefficient of X and Y is equal to

𝜌(X,Y) = − 𝜆

𝜆 + 1

√
𝜇(𝜆 + 2)(𝜇 − 2)

𝜆(𝜆2 + 𝜇2 + 2𝜆 − 2𝜇 + 1)

for 𝜇 > 2.

Theorem 1. The correlation coefficient between X and Y can take any value between −1 and 0.

Proof. Observe that 𝜌(X,Y) can be written as

𝜌(X,Y) = −
√
𝜆(𝜆 + 2)
𝜆 + 1

√
𝜇(𝜇 − 2)

(𝜆 + 1)2 + 𝜇(𝜇 − 2)
.

Note that for any fixed 𝜇 > 2, one can make 𝜌(X,Y) arbitrarily close to zero by choosing 𝜆 sufficiently small. As
√
𝜆(𝜆 + 2)∕(𝜆+1) → 1 as 𝜆 →

∞, for 𝛿 > 0, we can choose 𝜆0, sufficiently large, so that

√
𝜆(𝜆 + 2)
𝜆 + 1

> 1 − 𝛿

2
∀ 𝜆 ≥ 𝜆0.

Now, for any fixed 𝜆 ≥ 𝜆0, choose 𝜇 = n𝜆. For these choices,

√
𝜇(𝜇 − 2)

(𝜆 + 1)2 + 𝜇(𝜇 − 2)
=

√
n2𝜆2 − 2n𝜆

n2𝜆2 − 2n𝜆 + (𝜆 + 1)2
= 𝛾n, say.

Now, 𝛾n → 1 as n → ∞. So ∃ an integer N0 ≥ 1 ∋ 𝛾n > 1 − 𝛿

2
∀ n ≥ N0. Thus, for all 𝜆 ≥ 𝜆0 and 𝜇 = n𝜆 where n ≥ N0,

√
𝜆(𝜆 + 2)
𝜆 + 1

√
𝜇(𝜇 − 2)

(𝜆 + 1)2 + 𝜇(𝜇 − 2)
>

(
1 − 𝛿

2

)(
1 − 𝛿

2

)
> 1 − 𝛿.

This establishes that there exists 𝜆 and 𝜇 such that 𝜌(X,Y) can be made arbitrarily close to −1.
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Now, we provide the expectations and variances of the conditional distributions. The conditional expectation and variance of Y|X = x are

given by

E[Y|X = x] = 𝜇e−𝜇x

∞

∫
e−x

y−𝜇dy = 𝜇

𝜇 − 1
e−x, for 𝜇 > 1, (4)

and

Var(Y|X) = 𝜇e−2x

[
1

𝜇 − 2
− 𝜇

(𝜇 − 1)2

]
, for 𝜇 > 2,

respectively.

Remark 2. The regression of Y on X is log-linear in the sense that ln(E[Y|X = x]) is a linear function of x. Also, it is interesting to note that the

Var(Y|X) is a decreasing function of x and it is bounded above by 𝜇

[
1

𝜇−2
− 𝜇

(𝜇−1)2

]
.

Similarly, the conditional expectation and variance of X|Y = y are given by

E[X|Y = y] =
⎧⎪⎨⎪⎩
∫ ∞
− ln y x(𝜆 + 𝜇)e−(𝜆+𝜇)xy−(𝜆+𝜇)dx

= 1

𝜆+𝜇
− ln y, 0 < y < 1

1

𝜆+𝜇
, 1 < y < ∞,

(5)

and

Var(X|Y) = 1
(𝜆 + 𝜇)2

,

respectively.

Remark 3. Even though the conditional distributions of X|Y = y are different for 0 < y < 1 and y > 1, the latter distribution is exponential

with mean 1∕(𝜆 + 𝜇), whereas the former is not. Interestingly, the variances are not only identical but also independent of y; that is, the

conditional distribution of X|Y = y is homoscedastic.

3 CONNECTIONS WITH NOTIONS OF NEGATIVE DEPENDENCE

The product moment correlation coefficient measures only linear relationship between two random variables. However, it is possible that two

random variables may have strong linear relation but possess weak association with respect to different notions of dependence or vice versa. In

this section, we discuss several such notions of negative dependence, namely, quadrant dependence, regression dependence, and likelihood ratio

dependence, and investigate whether these properties hold for the proposed bivariate distribution.

Definition 1. Negatively (positively) quadrant dependent: Let G(x, y) be the distribution function of the pair of random variables (X,Y) with

marginal cdfs G1(x) and G2(y). The pair (X,Y) (or its cdf G) is said to be negatively quadrant dependent if

G(x, y) ≤ G1(x)G2(y) for all x, y. (6)

The dependence is strict if the inequality holds for at least some pair (x, y). Similarly, the pair (X,Y) (or G) is positively quadrant dependent if

the direction of the inequality in (6) is reversed (see Lehmann, 1966, for more details).

Definition 2. Negatively (positively) regression dependent: Lehmann (1966) has called G(x, y) negatively regression dependent if and only if

G(y|x) ≤ G(y|x′) for almost all y and almost all x < x′,

where G(y|x) = P[Y ≤ y|X = x]. Alternatively, G(x, y) is positively regression dependent if and only if the reverse inequality holds.

Definition 3. Negatively likelihood ratio dependent: Two random variables X and Y are said to be negatively likelihood ratio dependent if

their joint density function g(x, y) is reversely regular of order two (Karlin, 1968, p. 12); that is, g(x, y) satisfies

g(x1, y1)g(x2, y2) ≤ g(x1, y2)g(x2, y1)

for all x1 ≤ x2 and y1 ≤ y2.

Proposition 1. The distribution function F(x, y) given in (2) is negatively quadrant dependent.
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Proof.

Case 1. 0 < y < 1 and x > − ln y.

F(x, y) − F1(x)F2(y)

= y𝜆 − e−𝜆x + 𝜆

(𝜆 + 𝜇)y𝜇

(
e−(𝜆+𝜇)x − y𝜆+𝜇) − (1 − e−𝜆x)

(
𝜇

𝜆 + 𝜇
y𝜆

)
= e−𝜆x

y𝜇

[
𝜇

𝜆 + 𝜇
y𝜆+𝜇 − y𝜇 + 𝜆

𝜆 + 𝜇
e−𝜇x

]
≤ 0.

The last inequality holds using the facts 0 < y < 1 and e−𝜇x ≤ y𝜇 .

Case 2. y > 1 and x > 0.

F(x, y) − F1(x)F2(y)

= 1 − e−𝜆x − 𝜆

(𝜆 + 𝜇)y𝜇
(1 − e−(𝜆+𝜇)x) − (1 − e−𝜆x)

[
𝜇

(𝜆 + 𝜇)y𝜇

]
= 𝜆

(𝜆 + 𝜇)y𝜇
e−𝜆x(e−𝜇x − 1) < 0.

Remark 4. It is simple to note that the proposed distribution also satisfies the property of strong negative orthant dependence (see

Ghosh,1981, for more details).

Proposition 2. The distribution function F(x, y) given in (2) is negatively regression dependent.

Proof. For x < x′, we have e−𝜇x > e−𝜇x′

⇒ 1 − e−𝜇xy−𝜇 < 1 − e−𝜇x′ y−𝜇

⇒ F(y|x) ≥ F(y|x′)
⇒ F(x, y) is negatively regression dependent.

Proposition 3. The density function f(x, y) given in (1) is negatively likelihood ratio dependent.

Proof. The proof is a direct consequence of the definition.

4 STRESS–STRENGTH RELIABILITY BOUND

Reliability of a mechanical system depends on stress–strength interference, and the system survives as long as the strength (X) is greater than the

stress (Y). In this context, engineers are interested in computing the reliability function given by R = P[Y < X]. Traditionally, stress and strength

are assumed to be independent for the sake of simplicity, and ample amount of research material is available in the literature under various

parametric and nonparametric set-ups (English, Sargent, & Lander, 1996; Kotz, Lumelskii, & Pensky, 2003, Chapters 3 and 5; Pham & Almhana,

1995; Roy & Dasgupta, 2001). However, in many situations, it is more realistic to assume stress and strength are dependent (Kotz, Lumelskii, &

Pensky, 2003, p. 110). In this section, we find reliability of a system under negatively dependent stress–strength interference. Now,

R = P[X > Y] = 1 − P[Y > X]

= 1 −

∞

∫
0

P[Y > X|X = x]fX(x)dx = 1 −

𝜃

∫
0

𝜆e−𝜆xdx −

∞

∫
𝜃

⎛⎜⎜⎝
∞

∫
x

f(y|x)dy
⎞⎟⎟⎠ 𝜆e−𝜆xdx

= e−𝜆𝜃 − 𝜆

∞

∫
𝜃

e−(𝜆+𝜇)xx−𝜇dx = e−𝜆𝜃 − 𝜆

(𝜆 + 𝜇)1−𝜇

∞

∫
(𝜆+𝜇)𝜃

e−y

y𝜇
dy

= e−𝜆𝜃 − 𝜆

(𝜆 + 𝜇)1−𝜇
Γ[1 − 𝜇, (𝜆 + 𝜇)𝜃] ≤ e−𝜆𝜃

, (7)

where 𝜃 is the solution of the equation 𝜃 + loge𝜃 = 0, 0 < 𝜃 < 1. The method of bisection yields the approximate value of 𝜃 as 0.567. It is

interesting to note that this upper bound of R depends on 𝜆 only. Alternatively, if Y is interpreted as strength and X as stress, then 1 − e𝜃𝜆 would

provide a lower bound of the reliability R.
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In many situations, it is not possible to control the stress associated with the operating conditions of the system; however, one can possibly

achieve higher reliability simply by ensuring greater average strength ( i.e., a small value of 𝜆). Figure 2 shows a plot of maximal possible reliability

against the average strength of the system. It is seen that the maximal reliability of a system improves rapidly as the average strength increases

up to 5 units. However, the improvement is very slow beyond 10 units of average strength. Engineers may use this result for the cost benefit

analysis during product development.

Next, we focus on the problem of finding a lower bound for R.

R = P[X > Y]

=

∞

∫
0

P[X > Y|Y = y]fY (y)dy

=

𝜃

∫
0

𝜆𝜇

𝜆 + 𝜇
y𝜆−1dy +

1

∫
𝜃

⎛⎜⎜⎝
∞

∫
y

f(x|y)dx
⎞⎟⎟⎠

𝜆𝜇

𝜆 + 𝜇
y𝜆−1dy +

∞

∫
1

⎛⎜⎜⎝
∞

∫
y

f(x|y)dx
⎞⎟⎟⎠

𝜆𝜇

𝜆 + 𝜇
y−(1+𝜇)xdy

= 𝜇

𝜆 + 𝜇
𝜃𝜆 + 𝜆𝜇

𝜆 + 𝜇

∞

∫
𝜃

e−(𝜆+𝜇)yy−(1+𝜇)dy

≥ 𝜇

𝜆 + 𝜇
𝜃𝜆.

(8)

In contrast to the upper bound obtained in (7), the lower bound in (8) involves both of the parameters 𝜆 and 𝜇. A reversal of the roles of X and

Y would, in this case, yield 1 − 𝜇

𝜆+𝜇
𝜃𝜆 as an upper bound of the reliability R.

FIGURE 2 Maximal possible reliability with respect to average strength

FIGURE 3 Minimal possible reliability with respect to average strength for
different values of 𝜇
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Figure 3 shows a plot of the lower bound of reliability against the average strength of the system for different choices of 𝜇. Here also, the

minimal reliability of a system improves rapidly as the average strength increases up to 5 units. However, the improvement is slow beyond 10

units of average strength. As expected, the lower bound of R increases as 𝜇 decreases, and these differences are more prominent when the

average strength lies between 5 units and 15 units.

5 ESTIMATION METHODOLOGY

In this section, we provide estimation of the parameters associated with the proposed distribution. First, we derive MLEs of the unknown

parameters 𝜆 and 𝜇 based on a bivariate random sample {(x1, y1), ..., (xn, yn)} from (2). The log-likelihood function of (𝜆, 𝜇) can be written as

L(𝜆, 𝜇) = n ln 𝜆 + n ln𝜇 − (𝜆 + 𝜇)
∑n

i=1
xi − (1 + 𝜇)

∑n

i=1
ln yi. (9)

Now, maximizing the log-likelihood function provided in (9) with respect to (𝜆, 𝜇), the MLEs of 𝜆 and 𝜇 are obtained as

�̂� = n∑n
i=1 xi

and �̂� = n∑n
i=1 xi +

∑n
i=1 ln yi

,

respectively. Note that the MLE of 𝜆 is a function of the xi's only and is the same as that of the MLE of the scale parameter from an exponential

distribution. Also, the method of moments estimate (MME) of 𝜆 coincides with its MLE �̂�. However, the MME of 𝜇 exists if 𝜇 > 1 and is given by

̂̂𝜇 = max

⎧⎪⎨⎪⎩0,

[
1 − n�̂�

(�̂� + 1)
∑n

i=1 yi

]−1⎫⎪⎬⎪⎭ .

Similar to the MMEs, we also provide another set of estimators

�̃� = max

⎧⎪⎪⎨⎪⎪⎩
0,

n
n∑

i=1

[
xi + ln yiI(yi < 1)

] − �̃�

⎫⎪⎪⎬⎪⎪⎭
and

�̃� = max

{
0,

1
2

[∑n
i=1 yiexi + n∑n
i=1 yiexi − n

+ 1

]}
,

based on the expressions of conditional expectations (4) and (5), which exist for 𝜇 > 1. This estimation methodology is referred to as conditional

MME (CMME). Note that all the moments based estimators presented above are modified for necessary boundary corrections. In order to

compare the performance of these estimators, we simulate data with three different choices of (𝜆, 𝜇) for n = 20,50, and 200 and calculate bias,

standard error (SE), and 95% confidence interval based on 10,000 replications. The results are presented in Tables 1, 2 and 3. The MLE or MME

of 𝜆 performs better compared with CMME with respect to both bias and SE. Similarly, the MLE of 𝜇 performs better compared with both MME

and CMME. Interestingly enough, the bias and SE of the CMME of 𝜇 are marginally smaller than the corresponding MME. As expected, the

performance of all the estimators improves as the sample size increases.

TABLE 1 Results of the simulation study with n = 20

MLE MME CMME

Parameter True Bias SE CI Bias SE CI Bias SE CI

𝜆 1 0.055 0.244 [0.679, 1.607] 0.055 0.244 [0.679, 1.607] −0.065 0.623 [0.041, 2.458]

𝜇 2 0.108 0.494 [1.345, 3.280] 0.366 0.911 [1.402, 4.12] 0.223 0.502 [1.422, 3.395]

𝜆 3 0.162 0.747 [2.020, 4.917] 0.162 0.747 [2.020, 4.917] 0.044 1.189 [1.213, 5.882]

𝜇 2 0.108 0.497 [1.347, 3.281] 0.248 0.526 [1.427, 3.477] 0.228 0.504 [1.424, 3.414]

𝜆 2 0.104 0.493 [1.350, 3.285 ] 0.104 0.493 [1.350, 3.285 ] - - -

𝜇 0.5 0.029 0.125 [0.343, 0.823] - - - - - -

Abbreviations: CI, confidence interval; CMME, conditional method of moments estimate; MLE, maximum likelihood estimate; SE,
standard error.
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6 DATA ANALYSIS

For an illustration of the proposed model and estimation methodology, we consider a data set on daily air quality measurements for New York

Metropolitan Area from May 1, 1973 to September 30, 1973. Information on six variables, including average wind speed (in miles per hour) and

mean ozone level (in parts per billion), was obtained from the New York State Department of Conservation and the National Weather Service.

See Chambers, Cleveland, Kleiner, and Tukey (1983), Chapters 2–5, for details. Ozone in the upper atmosphere helps to protect the Earth from

the sun's harmful rays. On the contrary, exposure to ozone also can be harmful to both human health and some plants in the lower atmosphere.

Variations in weather conditions play an important role in determining ozone levels (Khiem et al., 2010; Topcu, Anteplioglu, & Incecik, 2003).

In general, wind can affect both the location and concentration of ozone level. High winds tend to disperse pollutants which in turn dilute the

concentration of ozone level. However, stagnant conditions or light winds allow pollution levels to build up, and thereby, ozone level too becomes

more concentrated. Meteorologists are interested in studying the effect of wind speed on distribution patterns of ozone (Gorai et al., 2015). On

the basis of the observed data, we find that Spearman's and Pearsons' correlation coefficients between wind speed and ozone levels are −0.59

and −0.60, respectively, which indicate strong negative dependence. To analyse this phenomenon, we fit the proposed model, given by (1) and

(2), using the maximum likelihood method. We find that the choice of wind speed as X and mean ozone as Y fits the data better compared

with the reverse choice of X and Y with respect to the Akaike information criterion. Under this set-up, the MLEs of the model parameters

TABLE 2 Results of the simulation study with n = 50

MLE MME CMME

Parameter True Bias SE CI Bias SE CI Bias SE CI

𝜆 1 0.020 0.146 [0.775, 1.344] 0.020 0.146 [0.775, 1.344] −0.0542 0.396 [0.308, 1.853]

𝜇 2 0.043 0.292 [1.546, 2.676] 0.161 0.386 [1.507, 3.021] 0.114 0.318 [1.520, 2.774]

𝜆 3 0.059 0.444 [2.320, 4.058] 0.059 0.444 [2.320, 4.058] −0.010 0.724 [1.772, 4.626]

𝜇 2 0.044 0.297 [1.542, 2.690] 0.122 0.328 [1.525, 2.839] 0.113 0.318 [1.532, 2.792]

𝜆 2 0.045 0.294 [1.555, 2.701] 0.045 0.294 [1.555, 2.701] - - -

𝜇 0.5 0.010 0.074 [0.385, 0.673] - - - - - -

Abbreviations: CI, confidence interval; CMME, conditional method of moments estimate; MLE, maximum likelihood estimate; SE,
standard error.

TABLE 3 Results of the simulation study with n = 200

MLE MME CMME

Parameter True Bias SE CI Bias SE CI Bias SE CI

𝜆 1 0.005 0.071 [0.877, 1.152] 0.005 0.071 [0.877, 1.152] −0.022 0.214 [0.616, 1.451]

𝜇 2 0.009 0.142 [1.751, 2.300] 0.048 0.202 [1.653, 2.446] 0.034 0.176 [1.674, 2.362]

𝜆 3 0.014 0.214 [2.619, 3.463] 0.014 0.214 [2.619, 3.463] −0.016 0.364 [2.321, 3.760]

𝜇 2 0.010 0.142 [1.756, 2.306] 0.041 0.181 [1.671, 2.388] 0.038 0.177 [1.677, 2.378]

𝜆 2 0.010 0.144 [1.750, 2.316] 0.010 0.144 [1.750, 2.316] - - -

𝜇 0.5 0.003 0.036 [0.437, 0.578] - - - - - -

Abbreviations: CI, confidence interval; CMME, conditional method of moments estimate; MLE, maximum likelihood estimate; SE,
standard error.

FIGURE 4 Estimated joint density of wind speed and mean ozone
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FIGURE 5 Effect of wind speed on the distribution of mean ozone

are �̂� = 0.101 and �̂� = 0.075 with 95% confidence interval as [0.085,0.122] and [0.063,0.091], respectively. The estimated joint density is

graphically presented in Figure 4. The estimated conditional distribution of mean ozone level under the proposed model keeping the wind speed

fixed at the empirical first (7.4 mph), second (9.7 mph), and third (11.5 mph) quartiles is presented in Figure 5. It is easy to see that the distribution

of mean ozone level decreases stochastically as wind speed increases. The advantage of fitting the proposed bivariate model is that it gives an

estimated conditional distribution of mean ozone level given the wind speed, including the mean, median, and different quantiles.

7 CONCLUDING REMARKS

To the best of the authors' knowledge, the proposed bivariate life distribution is perhaps the first of its kind without any restriction on

the correlation coefficient and also satisfies most of the popular notions of negative dependence available in the literature. In this context,

stress–strength reliability bounds have been obtained and estimation methodology for the model parameters proposed. In many real-life scenarios,

stress and strength typically depend on external factors such as temperature, pressure, and humidity. It would be interesting to incorporate this

phenomenon by introducing covariates in the stress–strength reliability modelling. Devising tests of dependence under this set-up might be a

challenging problem as well. Multivariate extensions of the proposed model can also be taken up in future.
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