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In the paper “Linear time algorithm to cover and hit a set of line segments optimally 
by two axis-parallel squares”, Theor. Comput. Sci. 769 (2019) 63–74, the LHIT problem is 
proposed as follows:

For a given set of non-intersecting line segments L = {�1, �2, . . . , �n} in IR2, compute 
two axis-parallel congruent squares S1 and S2 of minimum size whose union hits all 
the line segments in L,

and a linear time algorithm was proposed. Later it was observed that the algorithm has a 
bug. In this corrigendum, we corrected the algorithm. The time complexity of the corrected 
algorithm is O (n2).

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

For a given set of line segments L = {�1, �2, . . . , �n} in IR2, the following two problems were proposed in [1]:

Line segment covering (LCOVER) problem: Given a set L = {�1, �2, . . . , �n} of n line segments (possibly intersecting) in R2, 
compute two congruent squares S1 and S2 of minimum size whose union covers all the members in L.

Line segment hitting (LHIT) problem: Given a set L = {�1, �2, . . . , �n} of n non-intersecting line segments in R2, compute 
two axis-parallel congruent squares S1 and S2 of minimum size whose union hits all the line segments in L.

For both the problems, linear time algorithms were proposed. Later, we identified that there is a bug in the proposed 
algorithm for the LHIT problem. In this corrigendum, we present a revised algorithm for the LHIT problem. The time com-
plexity of this algorithm is O (n2) in the worst case.
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Fig. 1. The axis parallel rectangle Rabcd defined by the points a, b, c and d that does not hit all the members in L.

An axis parallel rectangle R is called a hitting rectangle if every member in L is either intersected by R or is completely contained 
in R. In [1], we performed a linear scan among the objects in L to identify four points a, b, c and d, where a is the right 
end-point of a segment �a ∈ L having minimum x-coordinate, b is the bottom end-point of a segment �b ∈ L having max-
imum y-coordinate, c is the left end-point of a segment �c ∈ L having maximum x-coordinate, and d is the top end-point 
of a segment �d ∈ L having minimum y-coordinate (see Fig. 1). The axis-parallel rectangle whose “left”, “top”, “right” and 
“bottom” sides contain the points a, b, c and d respectively, is denoted by Rabcd . In [1], we claimed that this axis-parallel 
rectangle Rabcd is a hitting rectangle. Using this rectangle, we computed two congruent squares of minimum size that hits 
all the line segments in L. Later, we observed that Rabcd is not always a hitting rectangle (see Fig. 1). Thus, the proposed 
algorithm for the LHIT problem may fail in some pathological cases. In this corrigendum, we correct our mistake. As in [1], 
we first compute Rabcd . If it hits all the segments in L, our proposed linear time algorithm in [1] will work for the LHIT 
problem. However, if Rabcd does not hit all the segments in L, we propose an O (n2) time algorithm for the LHIT problem.

As mentioned earlier, the members in L are non-intersecting. We use the following notations to describe our revised al-
gorithm. Here, λa , λb , λc and λd denote the lines containing the left, top, right and bottom boundaries of Rabcd respectively. 
Let �p be the segment which is not hit by Rabcd and lies farthest from both “a” and “d” along vertically downward and 
horizontally leftward directions respectively. Similarly the other segments �q , �r and �s are defined (see Fig. 1). Let (p1, p2)

be the two points of intersection of �p with λa and λd respectively. Similarly the point-pairs (q1, q2), (r1, r2) and (s1, s2) are 
defined (see Fig. 1). Note that, all the segments �p , �q , �r , �s may not exist. However, if at least one of these four segments 
exists, then our proposed algorithm in [1] will fail.

We first propose an algorithm for computing a minimum sized axis parallel square S that hits a given set of line 
segments L. We use this result to compute the two axis parallel congruent squares S1 and S2 of minimum size for hitting 
all the segments in L.

2. One hitting square

Fact 1. A square, that hits �a, �b, �c , �d, �p , �q, �r and �s (those which exists), will hit all the segments in L.

Proof. Let R be a square that hit all the segments in {�a, �b, �c, �d, �p, �q, �r, �s}, and � ∈ L \ {�a, �b, �c, �d, �p, �q, �r, �s} be 
a segment that is not hit by R. The square R must cover Rabcd (Fig. 1). So by our assumption, � must not intersect Rabcd . 
From the definition of the distinguished points “a”, “b”, “c” and “d”, the segment � must intersect both the members of at 
least one of the tuples (λa, λb), (λb, λc) and (λc, λd), and (λa, λd) outside Rabcd . Without loss of generality, assume that �
hits (λa, λd). In order to hit �p by R, it must hit �. Thus, we have the contradiction. �
Implication of Fact 1: The minimum size square hitting all the segments in a given set L is defined by at most eight 
segments {�a, �b, �c, �d, �p, �q, �r, �s} of L.

Observation 1. (i) The subset of L defining the possible minimum size squares hitting all the segments in L (if more than one such 
squares exist) is unique.

(ii) If S is the minimum sized axis parallel square that hits all the line segments in L, then at least one of the vertices of S will 
lie on one of the four segments p1 p2 , q1q2 , r1r2 and s1s2 .
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Proof. Part (i): A minimum sized square S hitting all the segments is defined by either two or three segments which are 
termed as the defining segments for S .

(a) If the number of defining segments of S is two, then those two segments must touch the two opposite boundaries 
(left, right) or (top, bottom) of S , or two diagonal vertices of S . The defining segments must touch the boundary of square 
S externally i.e. from outside, otherwise S can be further reduced.

• Two defining segments touch the two opposite sides of the square S: Here, the maximum of “minimum horizontal 
distance” and “minimum vertical distance” between “two defining segments” (say �1 and �2) will be the length of the 
side of S . See Fig. 3(a), (b). If there exists another square S ′ that hits all the segment, then S ′ will also hit �1 and �2
indicating that the horizontal/vertical span will increase or remain at least same as that of S . If S and S ′ are of same 
size (see Fig. 3(a), (b)), then the defining segments of S and S ′ are same.

• Two defining segments touch the two diagonal vertices of the square S: If S is defined by two segments �1 and �2
touching its two diagonal vertices, then the segments are either parallel to each other (see Fig. 3(c)) or the minimum 
distance between two defining segments �1 and �2 is the length of diagonal of S (see Fig. 3(d)). Here also if there exists 
another square S ′ defined by other two segments (�′

1, �
′
2) �= (�1, �2) then the horizontal/vertical span will increase or 

remain at least same as that of S . If S and S ′ are of same size (in case �1 and �2 are parallel as shown in Fig. 3(c)), 
then the defining segments of S and S ′ are same.

(b) If the number of defining segments of S are three, say �1, �2 and �3, then two of them must touch the two opposite 
boundaries (left, right) or (top, bottom) of the square S . If there exists any square S ′ that hits all the segments in L, then 
arguing as in the earlier case, it can be shown that the size of S ′ is at least as large as S , and the defining segments will 
remain same.
Part (ii): Assume that none of the vertices of the minimum sized axis parallel square S lies on p1 p2, q1q2, r1r2 and s1s2. It 
can be shown that, one can translate S “horizontally towards left or right”, and/or “vertically upward or downward” keeping 
its size unchanged, without missing any segment (i.e. each segment remains hit by S always) to move one of the vertices 
of S touching the respective segment. �

If there are multiple minimum sized congruent squares for hitting the segments (see Fig. 3(a), (b), (c)), then our proposed 
algorithm for the LHIT problem will also work. The reason is that after choosing an S1, our algorithm for computing S2
needs only the segments that are not hit by S1. We increase the size of S1 monotonically according to the event points 
corresponding to the top-right corner of S1. Now in each step, if S1 hits a defining segment of S2, then the size of S2
is reduced by eliminating that segment from it. If there exists multiple congruent S2 of minimum size that hit all the 
segments which are not hit by S1, we can choose any one of them as square S2, since all such S2’s are defined by the same 
subset segments (Observation 1(i)).

Lemma 1. An axis parallel square of minimum size hitting all the members of a given set L of n line segments can be obtained in O (n)

time.

Proof. Among the given set L of n line segments, we can identify the special line segments �i , i ∈ {a, b, c, d, p, q, r, s} (see 
Fig. 1) in O (n) time.

We now show that a minimum sized axis parallel square Sr whose “top-right” corner lies on r1r2 ∈ �r and hits all 
the segments, can be computed in O (1) time. The same method works for computing the minimum sized squares S p , Sq

and S s whose one corner lies on p1 p2, q1q2 and s1s2 respectively and hits all the line segments. Finally we will choose 
minimum sized square among S p , Sq , Sr and S s .

Computation of Sr : For each i ∈ {a, p, q, d, s}, we compute the locus loc(i) of the “bottom-left” corner of a minimum sized 
square S which hits the line segment �i , while its “top-right” corner moving along the segment r2r1. In Fig. 2(a), loc(s) is 
demonstrated, while in Fig. 2(b) all the loc(i), i ∈ {a, p, q, d, s} are shown. We also compute the locus of the “bottom-left” 
corner of S (denoted by loc(b, c) in Fig. 2(b)) that hits both �b and �c while the top-right corner of S moves along the 
segment r2r1. Each of the loci in {loc(i), i = a, p, q, d, s, (b, c)} consists of at most three line segments (see Appendix A for 
details). We consider two lines DL1 and DL2 of unit slope passing through r1 and r2 respectively (see Fig. 2(b)). We can 
compute the upper envelope U (as the distance is measured from r2r1) of the loci {loc(i), i ∈ {a, p, q, d, s, (b, c)}} within the 
strip bounded by DL1 and DL2 (colored red in Fig. 2(b)) in O (1) time. The square whose “bottom-left” corner lies on the 
upper envelope U while its “top-right” corner lies on r2r1, hits all the segments �i , i ∈ {a, b, c, d, p, q, r, s}. Thus, the upper 
envelope U corresponds to the locus of the bottom-left corner of Sr that hits all the segment in L (see Fact 1) while its 
top-right corner moves along r2r1. Note that U consists of a constant number of segments and it can be computed in O (1)

time. As one moves along an edge of U , the size of the square Sr either monotonically increases or decreases or remains 
same. So, the minimum size of the square Sr occurs at some vertex of U , and it can be determined by inspecting all the 
vertices of U .

If any one of �p , �q , �r and �s does not exist in the given instance with the segments L, then the corresponding locus is 
not present, and the same method works in such a situation with the available set of loci. �
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Fig. 2. (a) Computation of loc(s), (b) Computation of a minimum sized axis parallel square that hits all the segments. (For interpretation of the colors in 
the figures, the reader is referred to the web version of this article.)

Fig. 3. Demonstration of multiple copies minimum sized square S defined by two segments �1 and �2: (a) at the left and right boundary of S , (b) at the 
top and bottom boundary of S , (c) at two diagonal vertices of S where the segments are parallel, (d) at two diagonal vertices of S where the segments 
are non-parallel.

3. Two hitting squares

We now discuss the hitting problem by two axis parallel squares (S1, S2) using the method described in Section 2 as a 
subroutine. We assume that S1 hits �p along with some other members in L. S2 must hit the members that are not hit by 
S1. Our objective is to compute the pair (S1, S2) that minimizes max(size(S1), size(S2)).

Lemma 2. To minimize the max(size(S1), size(S2)), the “bottom-left” corner of S1 will lie on �p .

Proof. Let L1 ⊂L be the set of segments hit by S1 when max(size(S1), size(S2)) is minimized. Let the “bottom-left” corner 
of S1 lie below �p i.e. both bottom boundary and left boundary of S1 properly intersect �p (see Fig. 4). Let �1, �2 ∈ L1 be 
two segments so that the y-coordinate (resp. x-coordinate) of top end-point (resp. right end-point) of �1 (resp. �2) is 
minimum among that of all the segment �k ∈ L1. If the bottom (resp. left) boundary of S1 properly intersect �1 (resp. �2), 
we can translate S1 vertically upwards (resp. horizontally rightwards) keeping its size same, so that the bottom boundary 
(resp. left boundary) of S1 touches �1 (resp. �2) or the bottom-left corner of S1 touches �p . If �p is touched, the result is 
justified. If �1 (resp. �2) is touched, we can translate S1 towards right (resp. above) to make the bottom-left corner of S1
touching �p . The revised S1 also hits all the segments in L1. �

Lemma 2 says that a square S serves as S1 if the boundary of S touches �p and also hits a subset L′ ⊂L \ {�p} with at 
least one segment of L′ touching the boundary of S from outside. The reason of defining S1 in such a manner is that if all 
the segments L′ hit by S1 lie either inside S1 or properly intersect the boundary of S1, then we can reduce the size of S1
hitting the same set of segments. Now, we will introduce the concept of defining S1 using a subset of L as follows:
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Fig. 4. Proof of Lemma 2.

Fig. 5. The “bottom-right” corner of square S1 is at a segment end-point.

Definition 1. A subset L′ ⊆ L \ {�p} is said to be minimal to define a square S (with bottom-left corner is on �p ) as S1 if 
the members of L′ uniquely determine its top-right corner of S , and no proper subset of L′ can define the top-right corner 
of S uniquely.

We will consider possible subsets L1 ⊂ L that can define S1, and invoke the procedure described in Section 1 with the 
subset L \ (

L1 ∪ {�p}) to compute S2. The following Lemma 3 and Lemma 4 says that we need to consider the two cases 
separately depending on whether the bottom-left corner of S1, denoted by π , resides at (i) an end-point of �p , and (ii) an 
intermediate point of �p .

Lemma 3. If π coincides with an end-point of �p (Case (i)), then S1 is determined by a single segment of L \ {�p}.

Proof. Here, the top-right corner π ′ of S1 lies on a line of unit slope passing through π . We need to investigate the 
following three exhaustive cases.

• π ′ lies on a segment �i ∈L \ {�p} (see Fig. 5(b)), or
• π ′ lies on the vertical line passing through the left end-point of a segment �i ∈L \ {�p} (see Fig. 5(c), (d)), or
• π ′ lies on the horizontal line passing through the bottom end-point of a segment �i ∈L \ {�p} (see Fig. 5(a), (e)).

This is due to the fact that if none of these cases happen then we can get another square, say S ′
1 , of reduced size whose 

bottom-left corner is at π and it hits all the segments in L that are also hit by S1. Here S ′
1 serves the purpose of S1. Thus, 

the lemma follows. �
Lemma 4. If π coincides with an intermediate point of �p (Case (ii)), then S1 is determined by two segments of L \ {�p}.

Proof. In this case, the bottom-left corner of S1 will be determined as follows:

• a segment �i ∈L \{�p} defines the bottom boundary of S1 whose horizontal projection π on �p determines the bottom-
left corner of S1 (see Fig. 6(d), (e)), or

• a segment �i ∈ L \ {�p} defines the left boundary of S1 whose vertical projection π on �p determines the bottom-left 
corner of S1 (see Fig. 6(a), (b)), or

• a pair of segments �i and �′
i defines the top-right corner π ′ of S1, and the point of intersection of a line of unit slope 

passing through π ′ with the line segment �p determines the bottom-left corner of S1 (see Fig. 6(c)).
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Fig. 6. The “top-right” corner of S1 that hits �p is defined by two segments �i and � j .

In the first and second bulleted case, Lemma 3 says that one more segment � j is required to define the top-right corner of 
S1. In the third bulleted case, both the bottom-left and the top-right corners of S1 are already defined. Thus, the lemma 
follows. �

In the following two subsections we will compute S1 considering the two cases where (i) S1 is defined by one segment 
in L \ {�p} and (ii) two segments in L \ {�p} respectively. Note that, if a single segment � ∈ L touches a corner of S1, then 
� is said to touch both the boundaries of S1 adjacent to that corner (see Fig. 6(f)).

(A) S1 is defined by one line segment: We draw a straight line λ of slope “1” through an end-point π of �p . Next, we 
consider each segment �i ∈L \ {�p}, and create an array Q of event points as follows:

• If �i is strictly above λ (Fig. 5(a)), store the horizontal projection q of the bottom end-point of �i on the line λ in Q .
• If �i with negative slope intersects λ at a point q (Fig. 5(b)), we store q in Q .
• If �i with positive slope (≤ 1) intersects λ (Fig. 5(e)), store the horizontal projection q of the bottom end-point of �i on 

the line λ in Q .
• If �i with positive slope (> 1) intersects λ (Fig. 5(d)), store the vertical projection q of the left end-point of �i on the 

line λ in Q .
• If �i is strictly below λ (Fig. 5(c)), then store the vertical projection q of the left end-point of �i on λ in Q .

We consider each member q ∈ Q . Define S1 with its (bottom-left, top-right) corner points as (π, q). Identify the subset 
L1 of segments in L that are hit by S1. Call the procedure of Section 1 with the set of segments L \ L1 to compute S2. 
Replace the current optimum square-pair by max(size(S1), size(S2)) if needed.

Lemma 5. The minimum of the size of the optimum pair of squares where S1 is defined by one line segment of L \{�p} can be computed 
in O (n2) time.

Proof. The array Q can be computed in O (n) time. For each member q ∈ Q , (i) the subset L1 of L can be identified in 
O (n) time, and then (ii) the time required for computing S2 is also O (n). As |Q | = O (n), the result follows. �
(B) The top-right corner of S1 is defined by two line segments: By Lemma 4, assuming that the bottom-left corner of S1
lies in the interior of �p , we need to consider the following cases to uniquely define the possible bottom-left corner of S1.

B1: The bottom-left corner of S1 is defined by the top end-point of a segment �i touching its bottom boundary (see 
Fig. 6(d), (e)).

B2: The bottom-left corner of S1 is defined by the right end-point of a segment �i touching its left boundary (see Fig. 6(a), 
(b)).

B3: The bottom-left corner of S1 is defined by its top-right corner π ′ , defined by a pair of segments �i and � j touching the 
“top” and “right” boundaries of S1 (see Fig. 6(c)).

Note that, Fig. 6(f) is basically the case B3, where �i is assumed to touch both the “top” and “right” boundaries of S1.
We use four arrays Ll , Lr , Lt and Lb , each with the members in L sorted with respect to their left, right, top, and 

bottom end-points respectively. In addition, we keep a sorted array Ld containing the points of intersection of the line con-
taining �p and the lines of slope 1 (called diagonal lines) at both the end-points of each member in L \ {�p}. Each element 
�i ∈ L maintains six pointers to the corresponding element in Ll , Lr , Lt , Lb and to two elements of Ld corresponding to 
its two end-points. Also, each element of Li , i = l, r, t, b, d points to the corresponding segment � ∈ L. In addition, we also 
maintain four ordered arrays, namely I v1(τ ), I v2(τ ) Ih(τ ) and Id(τ ) for each end-point τ of the members in L. I v1(τ )

(resp. I v2(τ )) is the list of segments hit by an upward (resp. downward) vertical ray from τ , and Ih(τ ) (resp. Id(τ )) is the 
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Fig. 7. Generation of Dθ where θ is horizontal projection of top end-point of �i on �p .

list of segments in L intersected by the horizontal line (resp. diagonal line) passing through the point τ in sorted order. Each 
segment �i ∈L maintains eight pointers to point the lists I v1(τ ), I v2(τ ), Ih(τ ), Id(τ ), I v1(τ ′), I v2(τ ′), Ih(τ ′) and Id(τ ′)
where τ and τ ′ are two end-points of �i . The arrays Li , i = l, r, t, b, d can be created in O (n log n) time. Also, the arrays 
I v1(τ ), I v2(τ ), Ih(τ ) and Id(τ ) for all the 2n end-points (τ ) of the segments in L can be created in O (n2) time and will 
be stored using O (n2) space.

Let us now consider the generation of the instances in B1. Lemma 2 says that if �p exists, then the bottom-left corner 
of S1 lies on �p . We first generate all possible bottom-left corners C of S1 on �p in sorted order whose bottom boundary 
is supported by the top end-point of a segment �i in L by traversing the list Lt . For each element θ ∈ C (corresponding to 
the top-end point of a line segment �i), we consider a half-line λ(θ) of slope “1” at the point θ , and generate the array Dθ

that contains the top-right corner of all possible squares S1 lying on λ(θ), in order of their distances from the point θ (see 
Fig. 7). We denote the horizontal line at θ by hθ . The elements (known as event points) of the array Dθ are the points of 
intersection of λ(θ) with

(i) the vertical lines at the left end-point of all the segments in L whose left end-point lies below the line λ(θ) and above 
the line hθ (see red points e.g. e4

i , e5
i , e6

i in Fig. 7),
(ii) the vertical lines at the point of intersection of hθ with the segments L′ ⊆L, provided the slope of the segments in L′

are positive (see blue points e.g. e1
i in Fig. 7),

(iii) the horizontal line at the bottom end-point of all the segments whose bottom end-point lies above λ(θ) (see green
points e.g. e3

i , e8
i , e9

i in Fig. 7), and
(iv) the segments in L with negative slope that intersects λ(θ) (see pink points e2

i in Fig. 7).

Since S1 hits �i , we need to remove all the events generated on λ(θ) whose x-coordinates are less than that of the top 
end-point τ of �i (e.g. events for �10, �12 in Fig. 7).

The Type (i) (resp. Type (iii)) events are generated in increasing order of their x-coordinates by scanning the array 
Ll (resp. Lb). Type (ii) events are created in increasing order of x-coordinates from the list Ih(τ ), where the horizontal 
projection of the top end-point τ of the line segment �i on �p is θ . Type (iv) events are identified from the two ordered 
arrays Id(p1) and Id(p2) where p1 and p2 are two end-points of (same or different) line segments that generated two 
consecutive event points e and e′ in the array Ld , and x(e) ≤ x(θ) ≤ x(e′). Note that we need to consider only the segments 
of negative slope in Id(p1) ∪ Id(p2) in ordered manner to compute Type (iv).

Now, we merge the events of Types (i) to (iv) to get the list Dθ containing all possible events on λθ arranged in 
increasing order of their x-coordinates. We process each event of δ ∈ Dθ by executing the steps (i) compute an S1 square 
with (bottom-left, top-right) corners at (θ, δ), (ii) identify the segments in L′ ⊆ L that are hit by S1, and (iii) for the 
remaining segments L \L′ , we compute S2 in O (1) amortized time as described below.

Initialization step: For the first event δ1 ∈ Dθ , we apply the algorithm of Section 2 to compute S2. This also identifies the 
segments �a, �b, �c, �d, �p, �q, �r, �s ∈L \L′ as defined in Lemma 1. This needs O (n) time.

Iterative step: Below, we show that, after processing δi ∈ Dθ , when we process δi+1 ∈ Dθ in order, at most one among 
the eight segments �a, �b, �c, �d, �p, �q, �r, �s ∈L \L′ for S2 (see the eight situations in Fig. 8), may change, and it 
can be obtained in O (1) time.

In Fig. 8(a), if S1 is increased to S ′
1 (dotted square), then none of the 8 segments of S2 gets changed.

In Fig. 8(a), if S1 is increased to S ′′
1 (dashed square), then �d of S2 gets changed, which can be obtained by 

scanning Lt array.
In Fig. 8(b) �a of S2 gets changed, which can be obtained by scanning Lr array.
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Fig. 8. Demonstration of Iterative steps of computing S2 for different elements of Dθ .

In Fig. 8(c) �q of S2 gets changed, which can be obtained by scanning I v1(a) array.
In Fig. 8(d) �p of S2 gets changed, which can be obtained by scanning I v2(a) array.
In Fig. 8(e) �b of S2 gets changed, which can be obtained by scanning Lb array.
In Fig. 8(f) �r of S2 gets changed, which can be obtained by scanning I v1(c) array.
In Fig. 8(g) �s of S2 gets changed, which can be obtained by scanning I v2(c) array.
In Fig. 8(h) �c of S2 gets changed, which can be obtained by scanning Ll array.

The processing of all the elements in Dθ needs exactly one scan of the arrays Lb , Lr , Lt , Ll , I v1(τ ), I v2(τ ), Ih(τ ), 
Id(τ ), I v1(τ ′), I v2(τ ′). Thus, we can compute the required S2 for each element in δ ∈ Dθ in amortized O (1) time. The 
generation of the instances in B2 are similar to that of B1. To generate the instances of B3 with the segment � j on its right 
boundary, we need to consider a vertical line V j at the left end-point on � j , and include the horizontal projection of the 
bottom end-point of all the segments in L \ {�p} on V j provided the concerned bottom end-points lie to the left of V j and 
above the left end-point of � j . For all the segments in L with negative slope that intersects V j above the left end-point of 
� j , we include those points of intersection in V j . We also include the left end-point of � j as an event in V j . These events 
can be generated in O (n) time using the array Lb . For each of these events the corresponding S1 square and hence the 
corresponding S2 square are well-defined. The S2 squares for all the events in V j can also be computed in O (n) time. Thus, 
we have the following theorem:

Theorem 1. If Rabcd does not hit all the line segments in L, we can compute the optimal axis parallel square pair (S1, S2) that 
combinedly hit all the segments in L in O (n2) time.

Proof. Lemma 5 says that if the S1 square is defined by one line segment in L \ {�p}, we can compute the optimum pair 
of squares (S1, S2) in O (n2) time. The instances where S1 is defined by two line segments in L \ {�p}, are classified into 
three cases B1, B2, B3. For handling the case B1, we created O (n) events on �p in the array C in O (n) time using the Lt

array. These correspond to the bottom left corners of possible S1. For each event θ ∈ C , we create another array Dθ with 
O (n) sub-events; each of them may be the top-right corners of S1 square whose bottom-left corner is θ . We can process 
these O (n) events in Dθ in amortized O (n) time. Thus, all possible instances of type B1 can be generated in O (n2) time. 
Similarly, all possible instances of type B2 also can be generated in O (n2) time. Regarding the instances of type B3, we 
need to consider the left end-points of all the O (n) segments in L. As mentioned earlier, the number of events (top-right 
corner of S1 squares) generated is O (n), and they can be processed in amortized O (n) time. In special case of B3 (see 
Fig. 6(f)), both the top and right boundaries of the square S1 is touched by a segment �i , and the corresponding S2 can be 
determined in O (n) time. Since there are n such line segments �i ∈ L, the total time complexity result for identifying all 
such instances is also O (n2). Thus the result follows. �
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Fig. A.1. The locus loc(i) of the bottom left corner of square that hits the segment li .

Appendix A

Size of (i.e. the number of segments in) loc(i), i = {a, p,q,d, s, (b, c)}: The loc(i) is the locus of the “bottom-left” corner 
of a minimum sized square Sr which hits the line segment �i , while its “top-right” corner moves along the segment r2r1
(Fig. 2(a) demonstrates loc(s)). The loc(i) (within the strip � bounded by the line DL2 and DL1 of unit slope passing through 
r2 and r1 respectively) is as follows:

• If the segment �i (resp. � j) lies above DL2 (resp. below DL1), then the required locus will be a vertical line (resp. 
horizontal line) inside the strip � (see Fig. A.1(a)).

• If �i lies inside the strip �, then there are two possibilities:
(a) Slope of �i is negative (see Fig. A.1(b)): The required locus will be a horizontal segment passing through the top 
end-point of �i (to the left of it), until the bottom-left corner of the square coincides with the top end-point of �i ; then 
it will move along �i till the bottom end-point of �i is reached, and finally it will be vertically downwards, until it hits 
the boundary of �.
(b) Slope of �i is positive (see Fig. A.1(c)): The required locus will be a horizontal segment as in case (a) until the 
bottom-left corner of square hits the top end-point of �i , then finally it will be vertically downwards, until the boundary 
of � is hit.

• If �i intersects the boundary of �, then also we can construct the required locus in a similar way as in the aforesaid 
cases.

Thus, in all the situations loc(i) consists of at most three segments within �, where at most one of them is non-axis-parallel.
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