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ABSTRACT

We present an adaptive coupling strategy to induce hysteresis/explosive synchronization in complex networks of phase oscillators
(Sakaguchi–Kuramoto model). The coupling strategy ensures explosive synchronization with significant explosive width enhancement.
Results show the robustness of the strategy, and the strategy can diminish (by inducing enhanced hysteresis loop) the contrarian impact of
phase frustration in the network, irrespective of the network structure or frequency distributions. Additionally, we design a set of frequency
for the oscillators, which eventually ensure complete in-phase synchronization behavior among these oscillators (with enhanced explosive
width) in the case of adaptive-coupling scheme. Based on a mean-field analysis, we develop a semi-analytical formalism, which can accurately
predict the backward transition of the synchronization order parameter.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0003410

The phenomenon of synchronization has fascinated researchers
for many years due to its appearance in a variety of natural
as well as manmade systems. However, the study of synchro-
nization in adaptively coupled complex networks has got less
attention. Here, we have presented an adaptive coupling scheme
and explored the impact of that in the enhancement of explo-
sive width in the Sakaguchi–Kuramoto model on complex net-
works. Numerical investigation shows that the proposed scheme
ensures explosive synchronization (ES) with significant explo-
sive width enhancement for diverse frequency distributions with
different network realizations. More importantly, it is found
that the proposed coupling scheme can inhibit the contrarian
impact of the phase frustration in the network. We also have
established a semi-analytical treatment for investigating the sys-
tem using the Ott–Antonsen ansatz. The results obtained from
the semi-analytical approach are found to match closely with
the numerical simulation results. The analysis shows that the
adaptive-coupling function is robust and can enhance the hystere-
sis width in different complex networks having a variety of natu-
ral frequency distributions and for a broad range of frustration
parameters.

I. INTRODUCTION

Adaptively coupled oscillators have been found to exhibit a
wide range of complex behaviors.1–4 For instance, link weights co-
evolving with underlying dynamics can enhance synchronizability
in heterogeneous networks,5 and this mechanism can induce spon-
taneous synchronization in, e.g., certain groups of neurons of a brain
by adjusting the adaptive Hebbian learning process.6–9 Recently, it
has been reported that the adaptation of the coupling configuration
by the local order parameter may result in explosive synchroniza-
tion, a phenomenon characterized by discontinuous (first-order)
phase transitions between incoherent and coherent states accompa-
nied by hysteresis in networks of coupled oscillators.10–17

Of particular interest, explosive synchronization18,19 has been
found to emerge among adaptively coupled oscillators irrespective
of the structure of the networks or intrinsic frequency distributions.
We now raise the question “what happens if we use a modified
strategy obtained by incorporating higher power of the adapting
parameter?” Here, we use a modified adaptive-coupling scheme pro-
posed by Filatrella et al.18 on the Sakaguchi–Kuramoto model in a
complex network environment, and results show that the proposed
scheme can amplify or increase the hysteresis width (difference
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between the backward transition and forward transition points of
synchronization) for diverse frequency distributions with different
network realizations. For demonstration, we start with the classi-
cal network-coupled Sakaguchi–Kuramoto phase oscillators of size
N.20–23 Dynamics of each oscillator in the network is governed by the
equation

dθi

dt
= ωi + λli

N
∑

j=1

Aij sin(θj − θi − α), (1)

where ωi is the intrinsic natural frequency of the ith oscillator and
Aij is an ijth element of the adjacency matrix A = (Aij)N×N

.
Here, α accounts for a frustrating term within the range of

0 ≤ α < π

2
24–28 and λ is the coupling strength. li is a time-dependent

coupling term and contributes adiabatically to the coupling func-
tion.

As a general choice, we consider li as a function of the
Kuramoto order parameter R, which quantifies the degree of syn-
chronization of the entire population. The global order parameter is
defined as

Rei(ψ−α) =
1

N

N
∑

j=1

ei(θj−α), (2)

where 0 ≤ R ≤ 1 quantifies the magnitude of coherence and ψ

denotes the average phase. Prior research has shown that the adap-
tive function li = R can result in explosive synchronization.10,19

However, this strategy generates a constant hysteresis or explosive
width. We seek here a suitable choice of li which can enhance the
hysteresis loop of phase-coupled networks and choose the adaptive
function as li = Rz−1, where z (≥ 1) is a positive real number.18

To illustrate the effectiveness of our choice, we consider a het-
erogeneous Erdős–Rényi (ER) network with N = 3 × 102 nodes.
We increase (decrease) the coupling strength λ adiabatically with
an increment (decrement) δλ = 0.01 and compute the stationary
value of R for each λ during the forward (backward) transition
from the incoherent to the phase synchronized state. In this simula-
tion, we take the natural frequencies from a Lorentzian distribution
and set the frustration parameter (α) equal to 0.5. In Fig. 1(a), the
order parameter undergoes a continuous transition for the choice
of z = 1 where the network is purely diffusive, i.e., the coupling
function is not controlled by any adaptive coupling. However, set-
ting the adaptive parameter to a higher power (z = 2), one can
generate a discontinuous (explosive) transition in the synchroniza-
tion order parameter [see Fig. 1(b)]. Interestingly, the explosive
width is further enhanced if we increase the value of z from 2 to 3
[Fig. 1(c)]. The double headed arrow in Fig. 1(c) indicates the explo-
sive width for the explosive synchronization transition, which is
the difference between the backward transition and forward tran-
sition points of synchronization. In this paper, we have explored the
impact of z on the transition to synchronization in different com-
plex networks of Sakaguchi–Kuramoto oscillators for a broad range
of frequency distributions, namely, Lorentzian or uniform distri-
butions. We have also considered the degree-frequency correlated
environment and a special form of degree-frequency correlation,
which eventually gives perfect synchronization. Our results show
that the adaptive coupling function is robust and can induce the
enhanced explosive width for a broad range of frustration param-
eter over diverse network settings. In this work, we validate our
detailed numerical results by solving a (semi-analytically) order
parameter equation on the basis of Ott–Antonsen ansatz.29 The

FIG. 1. Expansion of hysteresis
width in small network. Visualization
of the expansion of the hysteresis
width for an ER network of size
N = 300, 〈k〉 = 12 with increasing
z. The right panel synchronization
diagram is constructed using the model
equation (1) with phase-frustration value
α = 0.5. The double headed arrow
in (c) indicates explosive width of the
synchronization transition.
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forward transition curve is perfectly fitted with our semi-analytical
findings.

II. ANALYTICAL APPROACH AND NUMERICAL

VERIFICATION

We start with the annealed network approximation proposed
in Refs. 30–34, which gives critical behavior of phase transitions
(including synchronization transition) in complex networks. For
the case of a sparse uncorrelated complex network with a degree
distribution P(k) in the thermodynamic limit (N → ∞), we may
write

dθi

dt
= ωi +

λRz−1ki

N
〈

k
〉

N
∑

j=1

kj sin(θj − θi − α), (3)

where ki is the degree of ith node and 〈k〉 is the average degree across
nodes. To obtain the explicit set of equations for the time evolu-
tion of the complex order parameter C = Rei(ψ−α), we use here the
Ott–Antonsen ansatz,29 where the density of the oscillators at time t
with phase θ for a given degree k and frequency ω be given by the
function f(k,ω; θ , t), and we normalize it as

∫ 2π

0

f(k,ω; θ , t)dθ = h(k,ω) = P(k)g(ω). (4)

To maintain the conservation of the oscillators20,31 in a network, the
density function f satisfies the continuity equation

∂

∂t
f(k,ω; θ , t)+

∂

∂θ
[vf(k,ω; θ , t)] = 0, (5)

where v is the velocity field on the circle that drives the dynamics of
f, which comes from the right-hand side of Eq. (3) as follows:

v(k,ω; θ , t) =
dθ

dt
= ω +

λk

2i
Rz−1

[

Ce−iθ − C∗eiθ
]

. (6)

Expanding f(k,ω; θ , t) in a Fourier series in θ , we have

f =
h(k,ω)

2π

{

1 +
[ ∞
∑

n=1

fn(k,ω, t)einθ + c.c.

]}

, (7)

where c.c. stands for the complex conjugate. We now consider the
Ott–Antonsen ansatz

fn = βn(k,ω, t) (8)

to obtain an equation for the function β(k,ω, t) and find the follow-
ing equation:

∂β

∂t
+ iωβ +

λk

2
Rz−1(Cβ2 − C∗) = 0, (9)

where
∣

∣β(k,ω, t)
∣

∣ ≤ 1 to avoid the divergence of the series. The
above equation is not yet in a closed form. So, to make the above
equation in a closed form, we get the complex global order parame-
ter as

C(t) =
e−iα

〈

k
〉

∫ ∞

kmin

∫ ∞

−∞
kP(k)g(ω)β∗dω dk. (10)

Now, to study a steady state solution, we average C(t)
= Reiψ−iα+i�t for the constant order parameter R, a phase ψ , and
a group angular velocity �. By suitably varying the reference frame,
ω 7→ ω −� and putting ψ = 0, without loss of generality, we have
C = Re−iα . Therefore, C∗ = Reiα and for stationary points of Eq. (9)
we find the solution of β̇ = 0.

We obtain the solution as follows:

β(k,ω) =











−ixeiα + eiα
√

1 − x2, |x| ≤ 1,

−ixeiα

[

1 −
√

1 −
(

1
x

)2

]

, |x| > 1,
(11)

where x = ω−�
λkRz and this solution satisfies the requirement |β| ≤ 1

for the convergence of the geometrical series [Eq. (8)]. The first solu-
tion corresponds to the synchronous state, and the second solution
is due to the desynchronous state. In this case, the order parameter
can be rewritten as

R =
1

〈k〉

[∫ ∫ ∞

kmin

kP(k)g(ω)β∗(k,ω)H (1 − |x|) dk dω

+
∫ ∫ ∞

kmin

kP(k)g(ω)β∗(k,ω)H (|x| − 1) dk dω

]

, (12)

where H is Heaviside functions. The first part of the right-hand
side of Eq. (12) encompasses the contribution of locked oscillators,
and the second part accounts for the contribution of drift oscilla-
tors to the order parameter R. Splitting the contributions of real and
imaginary parts, we can eventually obtain the coupled self-consistent
equations of R and� (see the Appendix).

To test the impact of z on the transition to synchronization,
we use a heterogeneous scale-free network (N = 2000,

〈

k
〉

= 12, and
γ = 2.8) generated from the configuration model, the frequencies
are drawn from a Lorentzian distribution with a mean of 0 and a
standard deviation of 1. The bi-stable state (hysteresis regime) is
shown by the yellow color (regime: II) in Figs. 2(a) and 2(b) for
the frustration parameters α = 0.0 and α = 0.5, respectively. For
lower z, the hysteresis width is found to be negligibly small and if we
increase this adaptive parameter to higher values, the width is sig-
nificantly enhanced irrespective of the frustration parameter. Here,
the magenta island (regime: I) shows the de-synchronized regime,
and cyan island (regime: III) is the locked part of coupled phase
oscillators. It is observed from the figure that as z is increased, the
region of the hysteresis is amplified significantly. Interestingly, the
higher adaptive-coupling parameter (z > 1) not only induces explo-
sive synchronization in the network but also enhances the explosive
width even for high phase frustration [e.g., α = 0.5 in Fig. 2(b)].
Typically, higher phase frustration (α > 0.3) destroys the hystere-
sis behavior in a degree-frequency correlated network when z = 1.34

However, for a higher value of z, it can overcome the situation and
explosive synchronization (ES) re-emerges, a study never explored
before.The boundary of the yellow and cyan regions which signi-
fies the forward critical point [λf(z)] of the hysteresis transition is
computed numerically from the model equation (1). The backward
transition points computed from the self-consistent coupled equa-
tions of R and� (see the Appendix) are shown with black diamonds

Chaos 30, 031101 (2020); doi: 10.1063/5.0003410 30, 031101-3
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FIG. 2. Phase diagram on the z − λ plane showing the amplification of hysteresis width. Magenta (I), yellow (II), and cyan (III) islands, respectively, represent asynchronous
(R ∼ 0), hysteresis, and synchronous (R ∼ 1) regions. These regions are separated by solid black lines indicating the critical coupling strength for the transition to synchrony
during the forward (λf ) and backward (λb) continuations. Both the figures are constructed with a scale-free (SF) network of size N = 2000, 〈k〉 = 12, and γ = 2.8. Panel
(a) indicates zero phase frustration, i.e., α = 0 and panel (b) indicates α = 0.5. The solid black boundary separating regions (II) and (III) and solid line separating regions
(I) and (II) have been obtained from numerical simulation. The black diamonds on this line are obtained from the semi-analytical approach [Eqs. (A3) and (A4)].

in Fig. 2, which show a close match with the solid black bound-
ary separating magenta and yellow regions obtained from numerical
simulation.

We have also numerically calculated the order parameter and
the global frequency � for z = 2 and z = 3 (see Fig. 3). The order
parameter (R) and global frequency (�) are shown in Figs. 3(a)
and 3(c) with blue lines and Figs. 3(b) and 3(d) with red lines, respec-
tively, as a function of λ. The backward transition points determined
from the self-consistent equations are shown with dashed vertical
lines in the figure, which shows a very close match with the back-
ward points obtained through numerical simulation of the whole
system. For z = 2, the hysteresis width [see the inset of Figs. 3(a)
and 3(b)] occurs due to the presence of adaptive coupling. For z = 3,
the width is significantly enhanced compared to z = 2. Note that,
the values of � and R are negligibly small before the forward crit-
ical coupling. The reason is as follows: adaptive function R(z−1),
acting on each node of the network, decreases the effective cou-
pling (3eff = λ× R(z−1) where 0 < R < 1 and z > 1) substantially.
Therefore, higher strength is required to establish a locked phase.
Numerical values of backward R and � closely match with the ones
obtained from the semi-analytical expression of R and � derived
from Eq. (12).

For further validation of the scheme presented here, we sim-
ulate the model [Eq. (1)] using a Watts–Strogatz small-world

network (N = 5 × 102,
〈

k
〉

= 4, and with a rewiring probability
β = 0.5). We have checked the impact of z in three different val-
ues of α = 0, 0.3, and 0.6. In the left panel of Fig. 4, the ES and the
enhancement of explosive width (double headed arrow) for three
z values (z = 1 in green, z = 2 in blue, and z = 3 in red line) are
shown for α = 0. In the middle panel and the right panel, α val-
ues are fixed at 0.3 and 0.6, respectively. We, therefore, observe that
the tuning parameter appearing as a power in the adaptive term can
enhance the width of hysteresis for a large class of networks and for
a wide range of phase frustration.

We perform the numerical analysis for a diverse set of fre-
quency distributions, and we show that the enhancement properties
appear for all the cases which only depend on z. The changes in for-
ward and backward points depend on the choices of frequency dis-
tributions. Next, we validate our proposition in frustrated networks
for a certain choice of frequency distribution directly correlated with
its own degree in which a global order parameter achieves perfect
synchronization35 (R = 1). This is important, as z mainly contributes
to the enhancement of hysteresis width irrespective of α. Although
α frustrates the system by not allowing the order parameter to reach
perfect synchronization, we seek a selection of frequency distribu-
tion which can avoid the impact of frustration α by reaching perfect
synchronization (R = 1) as well as it will create a broader explosive
width in the presence of higher values of z.

Chaos 30, 031101 (2020); doi: 10.1063/5.0003410 30, 031101-4
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FIG. 3. Order parameter R and group
angular velocity� as a coupling strength
λ for two values of z. The blue curve indi-
cates the synchronization diagram, and
the red curve indicates the group angular
velocity calculated from the model Eq. (1)
for SF network of network sizeN = 2000,
〈k〉 = 12, and γ = 2.8. The black dotted
verticle line indicates the backward transi-
tion point of R and � calculated from the
semi-analytic equations (A3) and (A4). All
data are simulated with phase frustration
α = 0.5.

FIG. 4. ES and enhancement of a ES width in a small-world network. Impact of α and z is tested in Watts–Strogatz small-world network of size N = 500, 〈k〉 = 4, and
β = 0.5. The double headed arrow indicates the explosive width of the hysteresis transition.
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FIG. 5. Amplification of explosive width in the case of degree-frequency correlation. Order parameter R as a function of coupling strength λ for a SF network of network size
N = 2000, 〈k〉 = 14, and γ = 2.8 for different values of z. The blue line indicates the forward transition and the red line indicates the backward transition. The magenta dot
on the cyan color line indicates our targeted point at (1, 1).

III. AMPLIFICATION OF HYSTERESIS WIDTHS IN A

DEGREE-FREQUENCY ENVIRONMENT

We have already shown that our adaptive strategy works effi-
ciently when the frequencies are drawn from a Lorentzian distri-
bution. A degree-frequency environment naturally induces ES;15,33

however, a frustrated network (α > 0.334) cannot reveal ES even
in the presence of degree-frequency correlated dynamics. Here, we
seek to understand the impact of such coupling configurations in
frustrated dynamics.

We consider a SF network of size N = 2000 with γ = 2.8
and average degree 〈k〉 = 14, where the natural frequency of each
oscillator scales with its own degree as ωi = aki, where a is a propor-
tionality constant. We set the phase-frustration parameter α = 1,
and we take a = sinα. In this case, order parameter R does not
exhibit the first-order transition for a non-adaptive environment
(z = 1) (Fig. 5, shown in the left column with a blue line). Inter-
estingly, one additional characteristic appears in the behavior of
the order parameter, i.e., R approaching 1 at λ = 1. This is due to
the emergence of perfect synchronization (R = 1)35,36 for choosing a
specific kind of frequency distribution.

As we know, in a perfect synchronization state,
∣

∣θj − θi

∣

∣ = 0
and R = 1. Using Taylor’s series approximation, Eq. (1) can be
written as

dθi

dt
= ω̃i − λ cos(α)

∑

Lijθj, (13)

where ω̃i = ωi − λ sin(α)ki and L is the Laplacian matrix. In a vec-
tor form, one can write θ̇ = ω̃ − λ cos(α)Lθ . Assume that, in global
synchronization, all the oscillators follow a common frequency �
and if we consider a � rotating frame, the phases will be freezed in

this frame by setting themselves into steady states ( dθ

dt
= 0). This fur-

ther implies θ
∗ = L†

ω̃

λ cos(α)
, where L† is the pseudo-inverse operator37

of the Laplacian matrix L. Now if we choose ωi = sin(α)ki which
sets ω̃ = 0 at λ = 1, and that eventually gives θ

∗ = 0. This signi-
fies that the frequency ensures perfect synchronization of oscillators
(R = 1) at λ = 1 (magenta dot in each panel of Fig. 5 on the cyan
line), although the choice of the higher value of z (= 2) in Rz−1 yields
the explosive width (Fig. 5, middle panel). The hysteresis width is
significantly increased for higher values of z (= 3) (shown in the
right panel). Therefore, we have shown that our adaptive strategy
can create ES and enhance the ES width in these types of networks
irrespective of the choice of the frequencies. The analytical predic-
tion is confirmed in Fig. 5 assuring perfect synchronization at λ = 1,
which also nullifies the contrarian effect of frustration parameter
α. The forward line misses the perfect synchronization point (blue
line), where the backward line coincides with R = 1 at λ = 1 for
each case of z.

IV. CONCLUSIONS

We have investigated the phenomenon of explosive synchro-
nization in complex networks of phase oscillators both numerically
and analytically, based on an adaptive-coupling strategy. Numerical
simulations for different networks in both frustrated and nonfrus-
trated environments show that, as a parameter (z) in the coupling
function is tuned appropriately, networks undergo abrupt transition
to (explosive) synchronization and width of the associated hystere-
sis loop is greatly enhanced. It is observed that the proposed strategy
is quite general and is applicable for any type of networks and fre-
quency distributions for the amplification of hysteresis widths. We

Chaos 30, 031101 (2020); doi: 10.1063/5.0003410 30, 031101-6
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have confirmed that the strategy can successfully induce the emer-
gence and enhancement of explosive synchronization in diverse
frustrated environments. Based on the Ott–Antonsen ansatz, we
have derived analytical expressions for the global order parameter
and global frequency. The results obtained from the semi-analytical
approach based on the Ott–Antonsen ansatz match with the back-
ward transition points obtained from the numerical simulation of
the entire complex networks.

ACKNOWLEDGMENTS

Prosenjit Kundu acknowledges support from DST, India under
the DST-INSPIRE Scheme (Code No. IF140880). P.J. acknowl-
edges support from the National Key R&D Program of China
(No. 2018YFB0904500), the National Science Foundation (NSF)
of Shanghai, Eastern Scholar, and the NSFC 269 (No. 11701096).
C.H. is supported by the INSPIRE-Faculty Grant (Code No. IFA17-
PH193).

APPENDIX: COUPLED EQUATION OF R AND �

The contribution of locked oscillators to the order parameter is

Rl =
(cosα − i sinα)

〈k〉

∫ ∞

kmin

∫

kP(k)g(ω)

×





√

1 −
(

ω −�

λkRz

)2

+ i
ω −�

λkRz



 dk dωH

(

1 −
∣

∣

∣

∣

ω −�

λkRz

∣

∣

∣

∣

)

.

(A1)

Now, the contribution of drift oscillators to the order parameter is
given by

Rd =
(sinα + i cosα)

〈k〉

∫ ∞

kmin

∫

kP(k)g(ω)
ω −�

λkRz

×



1 −

√

1 −
(

λkRz

ω −�

)2



 dk dωH

(∣

∣

∣

∣

ω −�

λkRz

∣

∣

∣

∣

− 1

)

. (A2)

Hence, we get R = Rl + Rd, where Rl and Rd are given by Eqs. (A1)
and (A2), respectively. Now, comparing the real and imaginary
parts, we get

R〈k〉 = cosα

∫ ∞

kmin

∫

kP(k)g(ω)

√

1 −
(

ω −�

λkRz

)2

H

×
(

1 −
∣

∣

∣

∣

ω −�

λkRz

∣

∣

∣

∣

)

dk dω +
sinα

λRz
(〈ω〉 −�)

− sinα

∫ ∞

kmin

∫

kP(k)g(ω)
ω −�

λkRz

√

1 −
(

λkRz

ω −�

)2

H

×
(∣

∣

∣

∣

ω −�

λkRz

∣

∣

∣

∣

− 1

)

dk dω (A3)

and

〈ω〉 −� = λRz tanα

∫ ∞

kmin

∫

kP(k)g(ω)

√

1 −
(

ω −�

λkRz

)2

H

×
(

1 −
∣

∣

∣

∣
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λkRz

∣

∣

∣

∣

)

dkdω +
∫ ∞

kmin

∫

P(k)g(ω)(ω −�)

×

√

1 −
(

λkRz

ω −�

)2

H

(∣

∣

∣

∣

ω −�

λkRz

∣

∣

∣

∣

− 1

)

dk dω. (A4)

By solving the above two equations, we can get the set of values for
order parameter R corresponding to coupling strength λ.
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