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Excitable cells often produce different oscillatory activities that help us to
understand the transmitting and processing of signals in the neural system.
The diverse excitabilities of an individual neuron can be reproduced by a frac-
tional-order biophysicalmodel that preserves several previousmemory effects.
However, it is not completely clear towhat extent the fractional-order dynamics
changes the firing properties of excitable cells. In this article, we investigate the
alternation of spiking and bursting phenomena of an uncoupled and coupled
fractional leech-heart (L-H) neurons.We show that a complete graph of hetero-
geneous de-synchronized neurons in the backdrop of diverse memory settings
(a mixture of integer and fractional exponents) can eventually lead to bursting
with the formation of cluster synchronization over a certain threshold of coup-
ling strength, however, the uncoupled L-H neurons cannot reveal bursting
dynamics. Using the stability analysis in fractional domain, we demarcate the
parameter space where the quiescent or steady-state emerges in uncoupled
L-H neuron. Finally, a reduced-order model is introduced to capture the
activities of the large network of fractional-order model neurons.

1. Introduction
Diverse neuronal responses in excitable cells can be triggered by injected stimu-
lus current [1–5]. For instance, recurrent firing activities as spike trains,
sequence of regular or chaotic bursting or mixed-mode type of oscillations
may emerge in a single neuron. In particular, the activation property of slow
(fast) potassium (sodium) ion channels or excitability encoded in a neuron
determines these firing activities [3–5]. However, a complete description of
firing patterns cannot be captured from a single neuron or group of neurons.
This is a fundamental challenge in dynamical system theory as the mode tran-
sition across different firing patterns or emergence of scale invariance in
membrane potential is always restricted [3,4,6] due to the limited access of par-
ameter space in neuronal dynamics. To overcome these challenges, recently
researchers have focused on fractional-order dynamics (FOD) [7–13] of neur-
onal models that can easily mimic (depending on fractional exponents) a
wide range of electrical activities [14–17] or multiple timescale dynamics [18].
On the other hand, the firing rates of neocortical pyramidal neurons in the pres-
ence of applied sinusoidal stimulus current [19], several activities of
potassium/sodium ion channels in conductance-based Hodgkin–Huxley or
leaky integrate-and-fire model [18,20,21] may reflect scale-invariant power-
law dynamics. All these above-mentioned features (complex firing patterns
and emergence of scale-free distribution of ionic activities) can be easily
explained in the light of fractional calculus connected to dynamics of neurons
[17]. The intrinsic properties of fractional calculus is related to the capacity of
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memory storage having long-range correlation which is
significantly shifted from Markov process [22–25]. Note
that FOD has a wide area of applications ranging from
tissue engineering [24,26], diffusion process [27–32], net-
works [33] to the vestibular oculomotor system [34] and fly
motion of sensitive neurons H1 [35,36]. It can be used as a
powerful tool in understanding the mechanism of synapses
[36] and geometrical properties of excitabilities of cells
[34,37] and biophysical models [38–41]. Different types of
biophysical models have various neurocomputational fea-
tures. This type of work (based on FOD) determines basic
functioning of the excitable cells when they are single or in
a network architecture.

However, a detailed investigation on complex firing pat-
terns emerging from the mixture of coupled heterogeneous
fractional-order neurons are completely missing to the best
of our knowledge. More precisely, we investigate the emer-
gence of regular and recurrent bursting in a mixed
population of fractional-order neurons in which a certain per-
centage of neurons are in silent state or follow subthreshold
oscillations, whereas the rest show tonic spiking or periodic
bursting. Note that, bursting is an alternation between repeti-
tive spiking and quiescent states or subthreshold oscillations
commonly found in neural system and worked as central pat-
tern generators [42] also observed in pathological brain states
[43], such as during epileptic seizures [43–45] and also in
Josephson junctions [46]. These mixed type of neurons con-
necting in a network may exchange information (for
instance, molecules passing through the sodium channel)
via diffusive interaction.

The pertinent challenge that we would like to explore is
the exploitation of the parameter space in such a way that
total population within a complete graph will reflect recur-
rent firing or bursting, avoiding quiescent or steady states
of uncoupled neurons. This article unfolds two important
aspects of a collection of fractional-order neuronal dynamics:
(i) how storage capacity/memory (the fractional parameter)
determines the firing and quiescent activities of neuron or
group of neurons and (ii) how such mixed population fire
with multiple spikes in a single burst and avoids extinction
in temporal domains over a certain coupling strength.

This is really a challenging but interesting task never
explored before. As a paradigmatic neuronal dynamics, we
use the electrical activities of leech-heart (L-H) interneuron
model [47–50] as the nodes of the graph (see §2 and 3 for
model description and stability). It is a biophysically plaus-
ible and computationally efficient mathematical model
already established in previous studies. Note that the intrinsic
parameter of each node in the network will be same; how-
ever, they change their dynamical features in the presence
of fractional parameters. The fractional-order L-H model gen-
erates a wide range of oscillations with varying, α in (0, 1]
while other parameters are fixed at their base values that
can never be produced in a classical-order model. We have
used history effects to shift the electrical activities towards
steady state (α < 1) from its original classical order domain
(α = 1) (see §4). The results suggest that diverse oscillations
can be emerged due to the effects of memory properties of
the FOD and interactions of the ionic currents [15,20]. In §5,
we describe the network dynamics of the complex firing pat-
tern in details. We will also show that the entire network fires
with burst by forming cluster synchronization in which neur-
ons within a subpopulation oscillate synchronously. We

explore a semi-analytical description of a reduced-order
model which can clearly mimic the collective features of glob-
ally connected L-H neurons in the backdrop of diverse
memory settings. This type of study is important as different
states of connected neurons (silent and oscillatory nodes)
coexist in the same network and they fire together for a
certain time and coupling strength.

2. Formulation of uncoupled fractional-order
leech-heart interneuron model

The classical L-H interneuron model is described for its
different electrical activities [47–50] in a wide range of inter-
esting parameters that control the L-H cells. We consider
the equations of motion of the L-H interneuron model for a
commensurate fractional-order system as follows:

dav
dta

¼ �2[30m2(vþ 0:07)þ 8(vþ 0:046)þ 200h

(v� 0:045)g3(a1, b1, v)] ¼ f1(v, h, m),

dah
dta

¼ 24:69[g(a2, b2, v)� h] ¼ f2(v, h, m)

and
dam
dta

¼ 4[g(a3, b3 þ Vshift
K2 , v)�m] ¼ f3(v, h, m),

9>>>>>>>>>>=
>>>>>>>>>>;
(2:1)

where v measures the membrane voltage. The state variables
h and m represent the membrane channel gating variables
where h is considered with the fast ionic channels such as
sodium ion channels and m is associated with the slow
gating variable. α∈ (0, 1] is the fractional exponent. A Boltz-
mann function, g(ai, bi, v) ¼ 1=(1þ eai(biþv)), 8i ¼ 1, 2, 3
(ai and bi are constant parameters) is associated with the for-
mulation of the excitable model that describes the kinetics of
the activation/inactivation of ionic currents. The simplified
model is based on the dynamics of the sodium and potass-
ium currents. Vshift

K2 is the experimentally observable
predominant parameter of the classical-order system that
has a deviation from the average membrane potential value
v =−0.018 V corresponding to the semi-activated potassium
ion channels when the Boltzmann function g = 1/2 [47–49].
The model in fractional domain has rich varieties of spiking
and bursting behaviour which will be described (in detail)
in §4.

3. Preliminaries, stability analysis and numerical
method

To study the FOD of the L-H model, we introduce the
familiar definition of the fractional derivative i.e. the
Caputo-order fractional derivative [8–10]. The commensurate
fractional-order system can be described as

cDa
0,tz(t) ¼ f(z(t)), (3:1)

with initial condition z(0) = (z1(0), z2(0),…zn(0))
T, where

z(t) [ Rn,cDa
0,tz(t) ¼ (cDa

0,tz1(t),
cDa

0,tz2(t), . . . ,
cDa

0,tzn(t))
T [ Rn,

the fractional-order lies in 0 < α< 1 and
f(z(t)) ¼ (f1(z(t)), f2(z(t)), . . . , fn(z(t)))

T [ Rn. Suppose the
fixed point of the system (3.1) is z� ¼ (z�1, z

�
2, . . . , z

�
n)

T. For the
asymptotic stability of the fixed point z*, we consider a small
perturbation η(t) from the fixed point z*, i.e. z(t) = η(t) + z*,
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where η(t) = (η1(t), η2(t),…, ηn(t))
T. The system (3.1) can be

rewritten as

cDa
0,tz(t) ¼ cDa

0,t(h(t)þ z�)

¼ fi(h1(t)þ z�1, h2(t)þ z�2, . . . , hn(t)þ z�n, ),

i ¼ 1, 2, . . . , n:

(3:2)

Since we know that cDa
0,tz

�(t) ¼ 0, we have

cDa
0,th(t) ¼ fi(h1(t)þ z�1, h2(t)þ z�2, . . . , hn(t)þ z�n),

i ¼ 1, 2, . . . , n:
(3:3)

The Taylor series expansion of the right side of system (3.3) is as
follows:

fi(h1(t)þ z�1, h2(t)þ z�2, . . . , hn(t)þ z�n) ¼ fi(z�1, z
�
2, . . . , z�n)

þ @ fi
@z1

����
z�
� � � @ fi

@zn

����
z�

� �
h(t)þ h:o:t:, (3:4)

where η(t) = [η1(t), η2(t),…, ηn(t)]
T. We know that

fi(z�1, z
�
2, . . . , z

�
n) ¼ 0 for i= 1, 2,…, n, therefore:

fi(h1(t)þ z�1, h2(t)þ z�2, . . . , hn(t)þ z�n)

� @ fi
@z1

����
z�

@ fi
@z2

����
z�

. . .
@ fi
@zn

����
z�

� �
h(t):

The linearized fractional-order system can be written as

cDa
0,th(t) ¼ Jjz�h(t), (3:5)

with initial condition η(0) = (η1(0), η2(0),…, ηn(0))
Twhere J = ∂fi/∂

zi|z* for i = 1, 2,…, n. The variable z is considered as
z ; (v, h, m)T. The jacobian matrix (J) is described in
appendix A.

Remark 3.1. The stability of the fixed point (z*) of the
fractional-order system (3.1) can be explained by the stability
of the linearized system (3.5) at the same fixed point (z*) i.e.
the fixed point of the nonlinear system (3.1) is asymptotically
stable if the fixed point of linearized system (3.5) is
asymptotically stable [51,52].

Definition 3.2. [53,54] The equilibrium point (system (3.5))
is locally asymptotically stable iff all the eigenvalues of
the Jacobian matrix of the linearized system evaluated
at the equilibrium solution satisfies the condition
jarg (eig(Jjz� ))j . pa=2. In a three-dimensional nonlinear
dynamical system, an equilibrium point which is a saddle
point, is called a saddle of index one if corresponding to
this equilibrium point one of the eigenvalues is unstable
and the other two eigenvalues are stable. Then, a saddle
point of index two represents a saddle point with one
stable eigenvalue and two unstable eigenvalues [54]. More-
over, it was observed that scrolls are produced only around
the saddle points of index two and saddle points of index
one are responsible for connecting the scroll attractors in
chaotic dynamical systems [54].

Definition 3.3. [54,55] A necessary condition for a nonlinear
fractional-order system to remain chaotic is keeping the
eigenvalue λ in the unstable region. It shows that α > (2/π)
tan−1 (|Im(λ)|/Re(λ)).

Suppose the system (3.1) becomes an incommensurate
fractional-order system, then the stability condition for the
equilibrium point is given by the following definition.

Definition 3.4. [56] Suppose the fractional orders are con-
sidered as 0 < αi = xi/yi < 1, such that g.c.d (xi, yi) = 1 for i = 1,
2,…, n, then the equilibrium point of the incommensurate
model is asymptotically stable if all the roots ξ of the character-
istic equation det (diag(jLa1 , jLa2 , . . . , jLan )� Jjz� ) ¼ 0 satisfy
jarg(j)j . p=2L, where L is the l.c.m of yi’s of αi’s.

3.1. Numerical scheme
We consider the fractional-order derivative (in Caputo sense)
of a variable z ≡ (v, h, m)T as follows:

Daz ¼ f(z, t), (3:6)

where, α∈ (0, 1) and f≡ ( f1, f2, f3)
T. Using the definition, we

obtain

Da
v(t)
h(t)
m(t)

2
4

3
5 ¼ 1

G(1� a)

ðt
0
(t� t)�a

v0(t)
h0(t)
m0(t)

2
4

3
5dt, (3:7)

where the gamma function is described as G(x) ¼ Ð1
0 e�ttx�1 dt.

The Caputo-order derivative is consistant with the phys-
ical initial and boundary conditions. In this case, the firing
characteristics of the system are strongly independent of the
initial conditions [8,20]. An additional advantage in this
case is that the derivative of a constant is zero. We can also
define, the initial conditions for the fractional-order system
that can be handled using an analogy with the classical-
order derivative. It includes a memory effect with a convolu-
tion between the classical-order derivative and a power of
time. It is efficient to integrate all the previous activities of
the function weighted by a function that follows power law
dynamics. Now, applying the L1 scheme [8,13,16,17,25]
on the system (3.7) and approximate the fractional-order
derivative as follows:

Da

v(t)
h(t)
m(t)

2
64

3
75 ¼ (dt)�a

G(2� a)

XN�1

k ¼ 0

[v(tkþ1)� v(tk)][(N � k)1�a � (N � 1� k)1�a]

XN�1

k ¼ 0

[h(tkþ1)� h(tk)][(N � k)1�a � (N � 1� k)1�a]

XN�1

k ¼ 0

[m(tkþ1)�m(tk)][(N � k)1�a � (N � 1� k)1�a]

2
66666666664

3
77777777775
: (3:8)

The numerical solution of (3.6) can be formulated as (combin-
ing (3.6) and (3.8))

v(tN)� (dt)aG(2�a) f1(v(t), h(t), m(t))þ v(tN�1)

�
XN�2

k ¼ 0

[v(tkþ1)� v(tk)][(N � k)(1�a) � (N� 1� k)(1�a)]

" #
,

where, tk represents the kth time step and tk = kΔt. Similarly,
we can derive the other two expressions. Hence, the numeri-
cal solution of (3.6) can be summarized as the difference
between the Markov term weighted by the gamma function
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and the memory trace. Memory trace has the main functional
role in the fractional-order system as it integrates all the past
activities. The memory trace has no effect for α = 1. The non-
linearity in the memory trace increases as we decrease the
fractional-order α from 1 and the system dynamics depends
on time. The commensurate fractional-order L-H system is
numerically integrated using this scheme. The Markov term
weighted by the gamma function is given by
(dt)aG(2� a) f(z, t)þ z(tN�1) and the memory trace (v, h, m-
memory) is given by

XN�2

k¼0

[z(tkþ1)� z(tk)][(N � k)(1�a) � (N � 1� k)(1�a)]

" #
:

4. Analytical results and different dynamical
responses of the fractional-order leech-heart
model

We analyse the fractional-order system in three different
regimes: bursting, regular spiking and phasic spiking,
respectively. We have considered four different parameter
sets from the above-mentioned regimes as follows [47]
a1 =−150, b1 = 0.0305, a2 = 500, b2 = 0.0333, a3 =−83, b3 =

0.018, set I: Vshift
K2 ¼ �0:021, set II: Vshift

K2 ¼ �0:015, set III:
Vshift

K2 ¼ 0:001 and set IV: Vshift
K2 ¼ 0:003, respectively.

Bifurcation analysis. Bifurcation analysis plays an impor-
tant role in analysing and determining the different
qualitative properties of any dynamical system. We per-
formed the bifurcation analysis of the classical-order model
using the MATCONT software [57]. Vshift

K2 is considered as
the predominant parameter while other parameters are at
their base values. The steady state disappears through a
saddle-node bifurcation at Vshift

K2 ¼ 0:002471 (LP1), where
one stable and one unstable equilibrium points collide and
mutually annihilate. Again there is a saddle-node bifurcation
at Vshift

K2 ¼ 0:020652 (LP2). The thick blue and dotted red lines
indicate the stable and unstable equilibrium states, respect-
ively (figure 1a). The system has a stable focus node for
0:0025 , Vshift

K2 , 0:012 and a stable node for Vshift
K2 . 0:012,

respectively. The system has an unstable focus node for
Vshift

K2 , 0:0024. The classical-order L-H model shows periodic
bursting for �0:024 , Vshift

K2 � �0:015 (figure 1b, extreme left
green regime). As we decrease the value of Vshift

K2 from −0.01
to −0.025, the classical order system goes through a series of
period-adding bifurcation and chaotic state exists around
the parameter value −0.024 [49]. This region shows limit
cycle and chaotic attractor. A chaotic window exists in
the neighbourhood of Vshift

K2 ¼ �0:021, that belongs to this
attractor state [47]. As we increase the value of Vshift

K2

–0.025 0.024

–0.005

–0.015

–0.026
0.95 0.85

subthreshold

steady
state

spiking
and
bursting

regular
spiking

bursting

0.75
a

a

0.65

–0.035

–0.045

–0.055
–0.02

–0.05

–0.04

–0.04 0.040.040.02–0.0062

0.8
0.9

1.0

0

0

0

0.05

0.04

0 0.02

LP1

shift
V      K2   

sh
if

t
V

   
   

K
2 

  

v

v

–0.05

0

0.05

v

–0.05

0

0.05

v

LP2

VK2
shift

shift
V      K2   

shift
V      K2   

(b)(a)

(c)

Figure 1. Bifurcation diagram of classical-order uncoupled L-H model and two-parameters bifurcation analysis in the presence of FOD. (a) V shiftK2 is considered as the
predominant parameter. LP1 and LP2 denote the saddle-node bifurcation points, whereas the thick blue and dotted red lines indicate the stable and unstable
equilibrium states respectively. (b) Parameter-space analysis: the various firing activities that depends on the parameter V shiftK2 with different fractional-orders α.
(c) A 3D representation of bifurcation diagram: green, red, blue and black slices represent the dynamics of the system (2.1) at fractional orders 0.82, 0.87,
0.95 and 1, respectively. For better visualization, we have shown the two slices for different α.
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(�0:014 , Vshift
K2 � 0:0025), it exhibits spiking (figure 1b,

extreme left yellow regime). Further, with the increase of
Vshift

K2 , the system shows phasic spiking and later it converges
to steady state. The firing patterns produced from the voltage
memory trace are almost similar to membrane voltage.
Further with the decrease of the fractional exponent (α), it
leads to the system in steady state i.e. memory traces
become too weak to generate an action potential i.e. spike.
The fractional-order L-H model shows different types of
firing patterns controlled by the fractional-order α and predo-
minant parameter Vshift

K2 (figure 1b). Steady state and
subthreshold regimes are shown by cyan and magenta
colour, respectively, whereas green, black and yellow regimes
indicate that the fractional-order system is in different oscil-
latory modes (bursting, spiking–bursting and tonic spiking)
(figure 1b). The white line in the figure 1b, that separates
the oscillatory regime from steady state is derived through
analytical treatment based on stability analysis of FOD. A
3D representation of the bifurcation analysis for various α is
shown in the figure 1c. Green, red, blue and black slices rep-
resent the dynamics of the system (2.1) at α = 0.82, 0.87, 0.94
and 1, respectively. We observed from figure 1c, how the frac-
tional order plays an important role in stabilizing the
complex system. For various Vshift

K2 , the system goes through
different transition states of oscillations as we vary α. We
explore this parameter space from excitable to oscillatory
regime for diverse fractional orders [47].

Example 4.1. First, we consider the parameter set I
(Vshift

K2 ¼ �0:021), where the classical-order model shows

bursting with three spikes per burst after some transient por-
tion. The equilibrium point at the parameter set I is E1 = (v*,
h*, m*) = (− 0.0272187, 0.0456, 0.0753). The eigenvalues of
the Jacobian matrix at E1 are λ1,2 = 4.22743 ± 53.7296i and
λ3 =− 4.06256. Using definition 3.1, we obtained that E1 is
asymptotically stable for α < 0.950014. E1 is a saddle point of
index two for classical-order system. We obtained the Lyapu-
nov exponents (LEs) =(0.001736,− 3.744327,− 39.210317)
using Wolf algorithm and Runge–Kutta fourth order method
with time step 0.01 [58]. The positive LE indicates the system
exhibits chaos in the neighbourhood of Vshift

K2 ¼ �0:021 for
α = 1.Moreover, the fractional-order systemexhibits chaotic be-
haviour for α > 0.950014, which is in good agreement with the
numerical simulation. With α = 0.99, the system shows regular
bursting, however the numberof spikes per burst increases and
it has a longer transient part i.e. a first spike latency. When we
decrease α = 0.98, it produces subthreshold oscillations and the
membrane voltage dynamics converges to quiescent state
when α converges to 0.94 (figure 2a–d ).

Example 4.2. Aswe increase the value of the predominant par-
ameter Vshift

K2 ¼ �0:015 (set II) the behaviour of the classical-
order model remains same as mentioned above, however,
the number of spikes per burst decreases i.e. there are two
spikes per burst after some transient period and interspike
interval decreases i.e. firing frequency increases. The eigen-
values of the Jacobian matrix at the fixed point E2 = (v*, h*,
m*) = (−0.027389, 0.0495, 0.1167) are λ1,2 = 5.85805 ± 54.7294i
and λ3 =−4.13658. E2 is asymptotically stable for α < 0.932117.
Here, E2 is a saddle point of index two for classical-order
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Figure 2. Time series of uncoupled fractional-order L-H model for different fractional exponents. Set I: V shiftK2 ¼ �0:021 (a)–(d ) α = 1, 0.99, 0.98, 0.94. Set II:
V shiftK2 ¼ �0:015 (e)–(h) α = 1, 0.97, 0.94, 0.92. Set III: V shiftK2 ¼ 0:001 (i)–(l ) α = 1, 0.85, 0.78, 0.72. Set IV: V shiftK2 ¼ 0:003 (m–p) α = 1, 0.83, 0.75, 0.68.
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system. With α = 0.97, the fractional-order excitable system
generates periodic bursting, and the number of spikes per
burst increases. When we decrease α to 0.94, it produces sub-
threshold oscillations and the membrane voltage dynamics
dies out when α converges to 0.92 (figure 2e–h).

Example 4.3. Now, we consider the parameter set III
(Vshift

K2 ¼ 0:001) where the classical-order model exhibits
single periodic spiking. The eigenvalues of the Jacobian
matrix at the fixed point E3 = (v*, h*, m*) = (−0.0288274,
0.0965, 0.3067) are λ1,2 = 23.5907 ± 58.9194i and λ3 =−4.52285.
E3 is asymptotically stable for α < 0.757548. E3 is a saddle
point of index two. With the decrease of α to 0.85, the
system generates mixed-mode type oscillations, first bursting
then single spiking. When we decrease α to 0.78, it has a
transition to bursting with spike latency. The system goes
to quiescent state when the fractional exponent converges to
α = 0.72 (figure 2i–l ).

Example 4.4. Finally, we consider the phasic spiking regime
i.e. set IV (Vshift

K2 ¼ 0:003), where the classical-order model
fires only a single spike at the onset of the input stimulus
current and remain quiescent afterwards (figure 2m).
The eigenvalues of the Jacobian matrix at the fixed point
E4 = (v*, h*, m*) = (−0.0291305, 0.1106, 0.3374) are λ1,2 =
28.2715 ± 58.271i and λ3 =−4.57275. E4 is asymptotically
stable for α < 0.712429. E4 is a saddle point of index two.
As we decrease the fractional-order to α = 0.83, the system
shows regular spiking with spike frequency adaptation
and it converges to steady state after some time elapsed.
With α = 0.75, the excitable system exhibits bursting.
However, the train of spikes converges to the oscillation
death condition after some time duration though the current
stimulus is applied. When we further decrease α = 0.68, the
fractional-order system converges to complete quiescent
state (figure 2m-p). The numerical integration scheme of the
FOD is described in §3.1.

In the next section, we will explore our main results: how
the mixed population of fractional-order single L-H neurons
with different characteristic behaves under diffusive coupling
over a broad range of coupling strength (D).

5. Network of L-H neurons
To illustrate the network dynamics, we consider a small net-
work having global coupling topology (figure 3a). This
network (in the absence of synaptic coupling strength D) con-
sists of three types of neuronal oscillations (based on FOD): six
blue nodes have periodic bursting (figure 3b) in which α is
unity (classical integer order system). Two green nodes are
in quiescent states (figure 3c, α = 0.92) and two red nodes
show subthreshold oscillations (figure 3d, α = 0.94). Note that
these oscillatory and steady-state behaviours are drastically
different to each other due to the significant changes of
memory properties in fractional domain (α). We use them as
nodal dynamics over the top of a globally coupled network.
After the coupling (D) is introduced, the network fires together
with regular bursting having multiple spikes (figure 3e–g) for a
certain range of coupling strengths. This is an interesting and
unique behaviour which cannot be identified in a single unit
of fractional node. Now, we have considered N number of
mixed fractional L-H neuron models in which a single
neuron reveals diverse recurrent spiking features or quiescent
characteristics. We also assume that the L-H neurons are diffu-
sively [59] connected (electrical coupling) through voltage
variable. The network of oscillators can be captured by

daizi
dtai

¼ f(zi)þ D
N

XN
j¼1

(zj � zi), i ¼ 1, 2, . . .N, (5:1)

where D is the coupling strength, and the considered
flow vector follows the L-H interneuron model. Therefore,
zi(t) = [vi(t), hi(t), mi(t)]

T and f :R3!R3. The sets of fractional
parameters are introduced as follows:

aia ¼ [a, . . . , a|fflfflfflfflffl{zfflfflfflfflffl}
p

, b, . . . , b|fflfflfflfflffl{zfflfflfflfflffl}
q

, g, . . . , g|fflfflfflfflffl{zfflfflfflfflffl}
r

, d, . . . , d|fflfflfflfflffl{zfflfflfflfflffl}
s

], (5:2)

in which p number of nodes will have identical fractional expo-
nent α, the rest q, r and s nodes have β, γ and δ exponents,
respectively. If the total population size is N, we can write

pþ qþ rþ s ¼ N: (5:3)

In this article, we have considered two and three types
of mixed population depending on the FOD. Generally, the

D > 0
a = 0.94, D = 0

a = 0.92, D = 0

a = 1, D = 0

= f (zi) + SAij (zj – zi)
D
N

da zi

dta

(a)(b)

(c)

(d )

(e)

( f )

(g)

Figure 3. Schematic diagram of firing activities of fractional and classical L-H neurons in presence (absence) of coupling (D) for parameter set II, see §§2 and 4 for
model description and parameter specification. (a) A network of 10 nodes. Six blue nodes exhibit bursting shown in (b) for classical L-H neurons in the absence of
fractional exponent (α). In the presence of FOD (c) two green nodes are in quiescent states and (d ) two red nodes reveal subthreshold oscillations. (e–g) After
coupling is introduced, entire network periodically fires (bursts) together.
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uncoupled neuron has three types of neuronal responses:
bursting (parameter sets I–II), spiking (parameter set III) and
phasic spiking (parameter set IV). The neurocomputational
features can be reproduced by varying the fractional exponents
in the single neuron model for a certain parameter space.
Therefore, we connect a mixed network of N neurons in
which maximum three different types of neuronal activities
(where at least one fraction of populations will be in quiescent
or steady state at D= 0) will act together. In this backdrop,
our motivation is to generate bursting in the entire network.
For simplicity, first, we consider two subpopulations of L-H
neurons in which p number of fractional L-H nodes are in oscil-
latory mode and q neurons are in excitable mode (p+ q=N).
A network of 100 neurons (N = 100) is considered for numerical
simulations.

We begin our analysis by considering the parameter set
III, where the classical-order model (p = 60) shows a train of
single spikes (figure 4a in blue colour) (α1,…,60 = α = 1).
The classical-order model is coupled with a subpopulation
(q = 40) of memory-dependent excitable oscillations
(α61,…,100 = β = 0.65, (figure 4a in red colour)) via the
membrane voltage vi. The oscillatory subpopulation is
de-synchronized within subpopulation and across the sub-
population when there is no coupling i.e. D = 0. As we
increase the coupling to D = 20, an interesting feature is
observed: the quiescent oscillators started to show subthres-
hold oscillations and the quiescence period of the regular
spiking decreases (figure 4b). Here, the two subpopulations
are separately clustered and completely synchronized
within their own domain (figure 4f ). At higher electrical
coupling (D = 40), the entire population bursts almost
together with multiple spikes (four) per burst (figure 4c), a
unique feature that can never be produced in the uncoupled
L-H neurons. Further increase of D (D = 45) reduces the
spikes (3) per burst and at D = 47, it shows two spikes per
burst (figure 4d ). Interestingly, the oscillatory subpopulation
was de-synchronized at lower coupling, whereas two cluster
states (synchronization within subpopulation) pop up at
higher coupling and more we increase the strength the
bursts follow in phase relation across the entire network
(see the spatio-temporal dynamics in figure 4f –h). In the
next subsection, we will use these synchronization dynamics

to reduce the entire network into fewer equations depending
on the number of synchronous clusters. Note that, the slow
dynamics is essential for the generation of bursting dynamics
in the network and it is provided by the excitable neurons
[60]. Thus, the presence of small groups of excitable units
create bursting in the network even though the uncoupled
system never exhibits bursting dynamics.

Now, we extend our study by considering the network
as a composition of three different subpopulations and
observed the effects of coupling for different parameter
sets. The size of these three subpopulations are considered
as p = 60, q = 20 and r = 20 (p + q + r =N = 100) neurons
respectively. At parameter set III, we consider the system
where it generates regular spiking (α1,…,60 = α = 1), bursting
(α61,…,80 = β = 0.78) and quiescent state (α81,…,100 = γ = 0.65)
(figure 5a). In the absence of coupling, all the neurons
within the cluster are de-synchronized (figure 5d ) but as
we increase the value of coupling strength, the entire popu-
lation shows bursting (figure 5b,c) and all three
subpopulations exhibit complete synchronization within the
cluster (figure 5e,f ). Note that the bursting activities of
coupled fractional and classical L-H neurons (three mixed
population) shown in the schematic diagram (figure 3) have
been explored for the parameter set II. The coupling has
been considered at D = 30.

Next, we consider the system at parameter set IV (three
subpopulations with same size as described above) where
it shows phasic spiking (α = 1, blue line in figure 5g),
spiking for a short time and then converges to a quiescent
state (β = 0.83, red line in figure 5g) and oscillation death
(γ = 0.68, black line in figure 5g). Now, we increase the
value of coupling to D = 5, the oscillators that were in
phasic spiking mode or the oscillators frequency adapting
steady states start to oscillate periodically (figure 5h,k).
Even the oscillators having oscillation death (γ = 0.68) states
(in absence of coupling) are showing low amplitude regular
oscillations for a long-term evaluation. The complete set
of neurons which were silent in uncoupled states are
firing collectively, a counterintuitive phenomena cannot be
captured without coupling and without parameter hetero-
geneity. As described above, these three clusters are
separately synchronized within itself and in the next section,
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Figure 4. Time evaluation and spatio-temporal dynamics of nodes in coupled networks having two types of fractional exponents. Time series of oscillatory nodes
(v1) and excitable nodes (v61) and the temporal dynamics of all the nodes for fractional-orders α1 = α2 = · · · = α60 = 1 and α61 = α62 · · · =α100 = 0.65 at
V shiftK2 ¼ 0:001 (set III) for various coupling strengths: (a,e) D = 0, (b,f ) D = 20, (c,g) D = 40 and (d,h) D = 47 are shown.

royalsocietypublishing.org/journal/rsif
J.R.Soc.Interface

17:20190859

7

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

23
 M

ay
 2

02
2 



we will design a reduced-order model description to reflect
the nature and states of entire network. At higher coupling,
the network converges to quiescent state after showing burst-
ing with adaptation up to a limited small time span (D = 28)
(figure 5i,l ). With significantly more higher coupling we
expect the coupled neurons will return to excitable states
together. This is closely analogous to the emergence of
Turing-like pattern in coupled neurons [61] in which inhom-
ogeneity occurs at intermediate diffusion and homogeneity
re-emerge for higher diffusion.

5.1. Reduced-order model description
We seek a general and low-dimensional model description
which can perform same feature as observed in large
networks. To proceed further, we carefully examine the
spatio-temporal plot for higher coupling strength in which
the nodes having identical exponent fire synchronously.
Based on this spatio-temporal dynamics, we can provide

a general proposition to reconstruct a reduced-order
model [60,62,63].

Proposition 5.1. If we have a network of N nodes and n
(n <N) number of synchronized clusters (favourably for
different size) then we can reduce the network in n
number of oscillators for considerably higher diffusive
coupling strength.

Assume three (n = 3) types of exponents (α, β and γ) exist
for the population of size N, and the size of each subpopu-
lation p, q and r, respectively. In cluster synchronization
domain, we may write

z1 ¼ � � � ¼ zp|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
p

¼ Za; zpþ1 ¼ � � � ¼ zpþq|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
q

¼ Zb; zpþ1þq ¼ � � � ¼ zpþqþr|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
r

¼ Zg: (5:4)
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Figure 5. Time evaluation and spatio-temporal dynamics of nodes in coupled networks having three types of fractional exponents. Time series of three nodes, one
represents all the oscillatory nodes (v1) and other represents all the excitable nodes (v61 and v81) and the temporal dynamics of all the nodes for various coupling
strengths and fractional-orders are shown: (a,d ) D = 0, (b,e) D = 25, (c,f ) D = 35 and α1 = α2 = · · · = α60 = 1, α61 = α62 · · · =α80 = 0.78, α81 = α82 · · · =
α100 = 0.65 at V shiftK2 ¼ 0:001 (set III). (g,j ) D = 0, (h,k) D = 5, (i,l ) D = 28 and α1 = α2 = · · · = α60 = 1, α61 = α62 · · · =α80 = 0.83, α81 = α82 · · · =
α100 = 0.68 at V shiftK2 ¼ 0:003 (set IV).
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Therefore, the entire network can be recast with only three
coupled oscillators.

daZa

dta
¼ f(Za)þ D

N
(q(Zb � Za)þ r(Zg � Za)),

dbZb

dtb
¼ f(Zb)þ D

N
(p(Za � Zb)þ r(Zg � Zb))

and
dgZg

dtg
¼ f(Zg)þ D

N
(p(Za � Zg)þ q(Zb � Zg)):

9>>>>>>>=
>>>>>>>;

(5:5)

If we have a mixed population with two exponents (α and β
and p + q =N), then the two coupled equations can capture
the behaviour of the entire graph. In this situation only the
first two equations of (5.5) will exist and the *second term
in the coupling will vanish. Note that Zα,β,γ(t) = [vα,β,γ(t), hα,β,
γ(t), mα,β,γ(t)]

T and an electrical coupling through the
membrane voltage v is used. The full equations for three
exponents are written in appendix B. The stability [58,59] of
synchronization or synchronized clusters is not explored here.

5.2. Stability analysis of the reduced-order model for
two subpopulations

We consider the parameter set IV (Vshift
K2 ¼ 0:003) for the

analytical treatment of the reduced-order model. The incom-
mensurate model is coupled for different fractional-orders
α = 1 and β = 0.83 with p = 0.4. From the definition 3.4, we
have x1 = 1, y1 = 1, x2 = 83, y2 = 100, here g.c.d (x1, y1) =
g.c.d(x2, y2) = 1 and L = l.c.m(y1, y2) = 100. At D = 20, the
system has three equilibrium points (v�a, h

�
a, m

�
a, v

�
b, h

�
b, m

�
b)

given by P0 = (−0.0448973, 0.997, 0.1209,−0.0448973, 0.997,
0.1209), P1 = (−0.0434028, 0.9936, 0.1348,−0.0434028, 0.9936,
0.1348) and P2 = (−0.0291305, 0.1106, 0.3374,−0.0291305,
0.1106, 0.3374). Considering the equilibrium point P0,
we obtain

j549 þ 42:0015j466 þ 38:0015j449 þ 495:008j383 þ 1500:12j366

þ 380:248j349 þ 1638:09j300 þ 16056:8j283 þ 13216:7j266

þ 1243:05j249 þ 52769j200 þ 109207j183 þ 42729:1j166

þ 350 872j100 þ 343 311j83 þ 1 099 890 ¼ 0

from the equation det(diag(jLa,jLa,jLa,jLb,jLb,jLb)�Jjz� )¼0.
The fixed point is asymptotically stable if all the roots of

the above equation satisfy the condition |arg(ξ)| > π/200.
However, we find a pair of roots, ξ1,2 =−1.02507 ±
0.0053894i that does not satisfy the stability condition (see
definition 3.4). Therefore, P0 is unstable. Similarly, we
obtain that the other two equilibrium points P1 and P2 are
unstable. At higher coupling (D = 40), we find that the
reduced-order model has two unstable equilibrium points
and one stable equilibrium point. Numerically, at D = 0, all
the oscillators show desynchronized oscillations however,
for long evaluations each of them converges to a quiescent
state (figure 6a). The corresponding reduced-order model
also exhibits similar behaviour (figure 6d). At an intermediate
diffusion (D = 20), the full and reduced-order models exhibit
bursting (figure 6b,e), which suggests that the system’s
fixed points are unstable. We have verified this by analytical
treatment (described in the first part of §5.2). Furthermore,
with the increase of coupling strength D = 40, the system
first shows oscillations at the onset and later it converges
to stable equilibrium point (v�a ¼ �0:0443, v�b ¼ �0:0442266,
figure 6c,f). The analytical treatment is not restricted for a
specific set of parameters, or two types of population. We can
also extend it to other sets of parameters with more than two
types of population.

To confirm the effectiveness of our proposition, we
have used a statistical measure to verify the level of synchroni-
zation within a subpopulation, in which the nodes have
identical fractional exponent (say α). We calculate the mean
distance from a randomly chosen node (say v1) from all
other oscillatory nodes within that subpopulation. For a
long-term evaluation of the variable v, the expression will
look like

hdi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXp
k¼2

(vk � v1)
2

p

vuut* +
, (5:6)

in which 〈 〉 represents the time average and p is the
size (number of oscillators having identical exponent α) of
that subpopulation having fractional index α. We calculate
〈d〉 in parameter set III for three coupling regimes. The vari-
ation of 〈d〉 is shown in the figure 7. At D = 0, the neurons
having exponent α are desynchronized to each other, therefore
the mean distance 〈d〉 has significantly high positive value.
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Figure 6. Time evaluation of different nodes in coupled full (a–c) and reduced-order model (d–f ) having two types of fractional exponents α = 1 and β = 0.83
with p = 0.4 for various coupling strengths: (a,d ) D = 0, (b,e) D = 20 and (c,f ) D = 40, respectively (set IV).
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The desynchronized time evaluation of the entire population
(v1,…, v60) within that subpopulation is shown in figure 7a,
and the time series of the reduced-order model (vα) is
shown in figure 7b. If we introduce the coupling (D∼ 5), the
population tries to follow coherent motion, therefore 〈d〉
decreases, which is further confirmed by the bunch of
coherent spiking oscillations of all nodes inside the subpopu-
lation (figure 7c). As per our proposition, the reduced-order
model also show same type of spiking oscillation (figure 7d)
with fast switching. Periodic bursting emerges at higher coup-
ling (D∼ 60) where three spikes in a single burst appear and
the mean distance d reduces to zero (figure 7e,f). The same dis-
tance measure (〈d〉) can be implemented for the other
subpopulation. At considerably higher coupling, each sub-
population will fire in unison (separately) by forming cluster
synchronization.

6. Conclusion
The article is mainly based on the study of dynamical
behaviour of a fractional-order single and network of
L-H interneuron model. In this manuscript, it has been
shown how spiking and bursting oscillations generate and
converge to steady state through different transition phases
in the fractional domain. The fractional-order model
can generate various spiking and bursting patterns that
can be controlled only using the fractional exponent, α.
Bursting emerges with different burst durations and different
numbers of spikes appear in one burst. However, the classi-
cal-order model cannot reveal such rich varieties of
complex dynamics in comparison with it is fractional
counterpart. We have also studied the dynamics of the
coupled network. A network of N = 100 neurons is

considered for the numerical simulations. At first, the study
has been carried out by taking the network (N = 100) into
two types of memory settings i.e. dividing them into two
subpopulations: 60 spiking neurons whereas another sub-
population consists of 40 excitatory neurons. We have also
considered the network as a collection of three subpopu-
lations with three different fractional exponents.
Interestingly, for both cases, the entire network fires with
burst for a certain coupling strength although the uncoupled
neurons cannot reveal bursting at all. We have also uncovered
that (at a higher coupling) the network emerges to cluster
synchronization where each subpopulation synchronized
separately. The formation of cluster synchronization enables
us to reduce the network in low-dimensional coupled sys-
tems and the results obtained from the reduced-order
models were found consistent with the numerical results of
the full network. An analytical treatment for the stability of
the reduced-order model for two subpopulations is derived,
which is in good agreement with the numerical simulations.
The coupling has a significant role in changing the dynamics
of the network for different parameter sets. The network con-
verges to a quiescent state when we increase the number of
excitable neurons in the network. This suggests that there is
a push–pull effect between the clusters. The oscillatory clus-
ters tried to push up the quiescent state towards oscillatory
states and vice versa [60].
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Appendix A
The Jacobian matrix of the fractional-order L-H interneuron
model is given by

J ¼
a11 a12 a13
a21 a22 a23
a31 a32 a33

0
@

1
A,

where the coefficients at the fixed point (v*, h*, m*) are given
as follows:

a11 ¼ �60(m�)2 � 16� 400
1

1þ ea1(b1þv�)

� �3

h�

� 180 000
1

1þ ea1(b1þv�)

� �4

ea1(b1þv�)h�(v� � 0:045),

a12 ¼ �400
1

1þ ea1(b1þv�)

� �3

(v� � 0:045),

a13 ¼ �120m�(v� þ 0:07),

a21 ¼ �12345
1

1þ ea2(b2þv�)

� �2

ea2(b2þv�),

a22 ¼ �24:69, a23 ¼ 0

and a31 ¼ 332
1

1þ ea3(b3þVshift
K2 þv�)

� �2

ea3(b3þVshift
K2 þv�),

a32 ¼ 0, a33 ¼ �4:

Appendix B
The three fractional L-H oscillators representing the entire
network (for three population p + q + r =N) described in (5.1)

dava
dta

¼ �2[30ma
2(va þ 0:07)þ 8(va þ 0:046)

þ 200h(va � 0:045)g3(a1, b1, va)]

þ D
N
(q(vb � va)þ r(vg � va)),

daha
dta

¼ 24:69[g(a2, b2, va)� ha],

dama

dta
¼ 4[g(a3, b3 þ Vshift

K2 , va)�ma],

dbvb
dtb

¼ �2[30mb
2(vb þ 0:07)þ 8(vb þ 0:046)

þ 200h(vb � 0:045)g3(a1, b1, vb)]

þ D
N
(p(va � vb)þ r(vg � vb)),

dbhb
dtb

¼ 24:69[g(a2, b2, vb)� hb],

dbmb

dtb
¼ 4[g(a3, b3 þ Vshift

K2 , vb)�mb],

dgvg
dtg

¼ �2[30mg
2(vg þ 0:07)þ 8(vg þ 0:046)

þ 200h(vg � 0:045)g3(a1, b1, vg)]

þ D
N
(p(va � vg)þ q(vb � vg)),

dghg
dtg

¼ 24:69[g(a2, b2, vg)� hg],

dgmg

dtg
¼ 4[g(a3, b3 þ Vshift

K2 , vg)�mg]:

(B 1)

For two populations (p + q =N), the last three equations of
(B1) and second term in each coupling function will not
appear. The state variables hα,β,γ and mα,β,γ represent the
membrane channel gating variables. α∈ (0, 1] is the frac-
tional exponent and g(ai, bi, va,b,g) ¼ 1=(1þ eai(biþva,b,g)),
8i ¼ 1, 2, 3.
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