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In this paper, we focus on the emergence of diverse neuronal oscillations arising in

a mixed population of neurons with different excitability properties. These properties

produce mixed mode oscillations (MMOs) characterized by the combination of large

amplitudes and alternate subthreshold or small amplitude oscillations. Considering the

biophysically plausible, Izhikevich neuron model, we demonstrate that various MMOs,

including MMBOs (mixed mode bursting oscillations) and synchronized tonic spiking

appear in a randomly connected network of neurons, where a fraction of them is in a

quiescent (silent) state and the rest in self-oscillatory (firing) states. We show that MMOs

and other patterns of neural activity depend on the number of oscillatory neighbors

of quiescent nodes and on electrical coupling strengths. Our results are verified by

constructing a reduced-order network model and supported by systematic bifurcation

diagrams as well as for a small-world network. Our results suggest that, for weak

couplings, MMOs appear due to the de-synchronization of a large number of quiescent

neurons in the networks. The quiescent neurons together with the firing neurons produce

high frequency oscillations and bursting activity. The overarching goal is to uncover a

favorable network architecture and suitable parameter spaces where Izhikevich model

neurons generate diverse responses ranging from MMOs to tonic spiking.

Keywords: Izhikevich neuron model, random networks, bicurcation scenaria, mixed mode oscillations (MMOs),

mixed mode bursting oscillations (MMBOs), excitable neurons, electrical coupling

1. INTRODUCTION

Diverse spiking oscillations and bursting phenomena of electrical activity in single neurons or
neuronal networks play an important role in information processing and transmission across
different brain areas (Connors and Gutnick, 1990; Izhikevich, 2003, 2004, 2007; Coombes and
Bressloff, 2005; Antonopoulos et al., 2015, 2019; Ma and Tang, 2017; Mondal and Upadhyay, 2018;
Teka et al., 2018). The underlying mechanism of signal processing in neurons depends on the
variations of membrane voltages called spikes (Izhikevich, 2003, 2004, 2007). The complexity of

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://doi.org/10.3389/fncom.2020.00049
http://crossmark.crossref.org/dialog/?doi=10.3389/fncom.2020.00049&domain=pdf&date_stamp=2020-06-08
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles
https://creativecommons.org/licenses/by/4.0/
mailto:chittaranjanhens@gmail.com
mailto:pengji@fudan.edu.cn
https://doi.org/10.3389/fncom.2020.00049
https://www.frontiersin.org/articles/10.3389/fncom.2020.00049/full
http://loop.frontiersin.org/people/474132/overview
http://loop.frontiersin.org/people/598942/overview
http://loop.frontiersin.org/people/473498/overview
http://loop.frontiersin.org/people/898681/overview


Ghosh et al. Mixed Mode Oscillations in Random Networks

spikes or trains of spikes can be controlled by external
stimuli, e.g., by injected electrical currents. In a common
scenario, a bunch of spikes (called a burst) may emerge in the
activity of single neurons or in neural populations (Izhikevich,
2000; Coombes and Bressloff, 2005; Constantinou et al., 2016;
Zeldenrust et al., 2018). Such oscillatory patterns of membrane
voltages can bemodeledmathematically by biophysical dynamics
(with realistic parameters) such as the (un)coupled Izikevich
neuron model (Khoshkhou and Montakhab, 2018), described in
the next section. Our goal is to study the firing and collective
activities of coupled neurons in an environment of heterogeneous
excitabilities. Neural networks support functional mechanisms
within brain areas. For example, such diverse groups of neurons
in the cortex are responsible for many complex neuronal
mechanisms (Izhikevich, 2000, 2004, 2007).

Most of the neurons are excitable, i.e., they show quiescent
behavior however, they can also fire spikes when they are
stimulated by input stimuli. In neural computations, the neurons
continue to fire a train of spikes when there is an input by
injecting a pulse of direct current (DC) and this is called tonic
spiking. There exist different types of spiking patterns depending
on the nature of the intrinsic dynamics. Bursting follows a
dynamic state in a neuron where it repeatedly fires discrete
groups or bursts of spikes, i.e., when the activity alternates
between a quiescent state and repetitive spiking (a bunch of
spikes appear together). This might be regular or chaotic,
depending on the dynamics of the system and excitabilities or
couplings (Izhikevich, 2000, 2004, 2007). Apart from spiking
and bursting activities, one of the interesting complex firing
patterns emerge from the activity of neurons is the mixed-
mode oscillations (MMOs) (Brøns et al., 2008; Desroches et al.,
2012; Bacak et al., 2016), what is the main focus here. In
MMOs, the oscillations are distributed with different amplitudes
where the firings alternate between large and small amplitude
oscillations (Brøns et al., 2008) (i.e., the so called LAOs and
SAOs, respectively) reflecting different rhythmic activities such
as locomotion or breathing (Bacak et al., 2016). The multiple
time scales (e.g., fast potassium channels with slow kinetics;
Ghaffari et al., 2015) of voltage variables or controlled noise
can induce MMOs in neuronal systems (Muratov and Vanden-
Eijnden, 2008; Upadhyay et al., 2017). MMOs were first observed
in chemical reaction systems (Ostwald, 1900). They were also
observed in Belouzov-Zhabotinsky reactions (Schmitz et al.,
1977; Showalter et al., 1978; Brøns and Bar-Eli, 1991), calcium
dynamics and electrocardiac systems (Kummer et al., 2000;
Rotstein and Kuske, 2006). We note that, from a dynamical
perspective, the generation of MMOs can be analyzed through
the canard phenomenon (Eckhaus, 1983; Drover et al., 2004;
Rubin and Wechselberger, 2008) and also via homoclinic
bifurcations (Chakraborty and Dana, 2010). Krupa et al. (2008)
analyzed the mechanism of MMOs in a two-compartmental
model of dopaminergic neurons in the mammalian brain stem.
To investigate the generation of MMOs in a self-coupled,
FitzHugh-Nagumo model, Desroches et al. (2008) developed a
computational method and Guckenheimer (2008) examined how
chaotic dynamics and MMOs arise near folded nodes and folded
saddle-nodes on slow manifolds. Vo et al. (2010) demonstrated

that MMOs can generate a type of bursting that can be reflected
in a biophysical model of pituitary lactotroph (Toporikova et al.,
2008). MMOs were also observed in stellate cells of the medial
entorhinal cortex (layer II) and Rotstein et al. (2008) analyzed the
mechanism of such patterns in a biophysical, conductance-based,
model. Apart from MMOs, mixed-mode bursting oscillations
(MMBOs) (Desroches et al., 2013) were also observed when
a bunch of spikes in a single burst appears with SAOs. In
MMBOs, burst activity appears instead of single spikes within
LAOs. Our study on network dynamics sheds more light on such
interesting patterns.

In this paper, we explore the emergence of spiking and
MMOs in a random network of diffusively coupled (through the
membrane voltage variable) Izhikevich neurons in a backdrop
of diverse excitabilities. The role of network structure and
arrangement of mixed neural populations in the network are the
main objectives for the study of the emergence of MMOs. In
network neuroscience, researchers investigate the firing activities
and collective patterns of neural activity where neurons are
connected in a complex-network topology (Brøns et al., 2008;
Desroches et al., 2008; Erchova and McGonigle, 2008; Postnov
et al., 2008; Krupa et al., 2014; Malagarriga et al., 2015;
Antonopoulos, 2016; Borges et al., 2017, 2020; Khoshkhou
and Montakhab, 2018). For instance, a correlated synchronous
firing appears in neuronal cells with the adaptive exponential
integrate-and-fire model with excitatory-inhibitory synapses that
can be associated with epileptic seizures (Protachevicz et al.,
2019). Bittner et al. (2017) showed that balanced excitatory
and inhibitory input currents in clustered (non-clustered)
networks of neurons may reflect spiking activities in which
inhibitory neurons share more coherent activities. Recently,
MMOs have also been observed in pre-Bötzinger complex
networks (Bacak et al., 2016) (a medullary region that controls
breathing in mammals) in the presence of heterogeneous
excitable parameters. In both studies, a three-coupled reduced
model was proposed to understand the behavior of collective
spiking patterns and the conditions for the emergence of LAOs
and SAOs were studied.

However, the role of network architecture and different
excitabilities in the emergence ofMMOs are not well-understood.
In this paper, we have affirmative answer to the question related
to the emergence of MMOs. We reveal how such MMOs can
be distinguished from other firing patterns, supported by their
relevant biophysical significance (Golomb, 2014). Moreover, the
neurons in the paper are placed on the nodes of a random
network and transfer signals through its links. In the absence
of coupling, the activity of the considered neuronal population
reveals two types of dynamical states (or excitabilities), ranging
from spike-bursting to subthreshold to quiescent states. The
key question that arises here is the following: considering a
mixed/heterogeneous neural population (neighboring neurons
of self-sustained spiking neurons might have subthreshold
oscillations), can we design a random network of neurons (with
Poissonian neighbor node-degree-distribution) that will give rise
to collective firings where subthreshold or quiescent neurons are
compelled to show high amplitude activities?Wewant to uncover
the coupling parameter space and the ratio of mixed populations
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where MMOs and fast tonic spiking behavior emerge. In this
context, by mixed/heterogeneous neural population we mean
that neurons with different excitability properties i.e., the non-
identical neurons with different firing patterns are connected in
a complex network. At weak couplings and a diluted random
network setting, we show that desynchronized subthreshold
neurons exhibit MMOs. With the increase of the coupling, all
subthreshold neurons fire in a mixed-mode state. In both cases,
MMOs are not prominent in oscillatory neurons and eventually
disappear as the coupling strength increases. Consequently,
neural subpopulations emerge as synchronous clusters exhibiting
tonic spiking behavior. For diluted random and homogeneous
networks, where the electrical coupling strength is constant,
we show that neighbors exhibiting self-sustained oscillations,
determine the structural patterns of MMOs. Based on the
synchronized cluster over a certain coupling range, we can
reduce the random network to a low dimensional, reduced-
order network, i.e., to two coupled oscillators which reflect and
predict the diverse dynamical patterns that appear in the random
network. Additional to the random network, we have validated
our results in small-world network of 500 nodes. In particular,
our results for both types of networks confirm that the emerging
features observed in the random network can also be found in the
small-world network.

The paper is organized as follows: in section 2, we describe the
Izhikevich neuron model and discuss its dynamical properties.
The model displays various electrical activities (i.e., different
spiking and bursting patterns) for fixed parameter values
and for a range of injected currents, I. Then, we investigate
the dynamical behavior on a random network (see section
2.2) based on single Izhikevich neurons with various firing
responses. In particular, we identify the parameter region
and coupling strategy where MMOs and MMBOs exist, and
analyze the transition phases of firing responses (sections 2.2.1
and 2.2.2). In section 3, the reduced-order network model
is constructed to verify the results obtained for the random
network. A bifurcation analysis is also performed to show
the mixed mode states and other phases of oscillations. In
section 4, the MMOs are further tested in a small-world
network. Finally, we conclude our work in section 5, followed by
a discussion.

2. BIOPHYSICAL MODEL AND RANDOM
NETWORK

2.1. Model Description
Our work focuses on the analysis of the complex dynamical
behavior in the 2-dimensional nonlinear Izhikevich model that
captures neuronal membrane voltages (Izhikevich, 2003, 2004).
It produces spiking and bursting patterns distributed over
a range of parameter values. It is a biophysically plausible
and computationally efficient mathematical model that takes
into account continuous spike generation and a discontinuous
resetting process following the spikes. It has two state variables;
the membrane voltage, v and recovery variable, u, which measure
the activation of K+ and inactivation of Na+ ionic currents,

respectively. The dynamical activity of an Izhikevich neuron is
captured by the set of equations

v̇ = 0.04v2 + 5v+ 140− u+ I, (1)

u̇ = a(bv− u), (2)

with an after-spike resetting constraint, i.e., when the membrane
voltage v reaches a peak value vpk, the following relation is
applied: if v ≥ vpk(= 30), then v ← c and u ← u + d.
The parameters a, b, c, and d are dimensionless. The resting
potential ranges in the interval−70 to−60mV and depends on b
that indicates the sensitivity of u to the subthreshold fluctuations
of the membrane potential, v. The parameter a measures the
timescale of the recovery variable u. The parameters c and d
control the after-spike reset value of v and u, respectively, caused
by fast high-threshold K+ channel conductances and slow Na+

and K+ conductances. The function (0.04v2 + 5v + 140) was
derived using the spike initiation dynamics of a cortical neuron.
The different suitable choices of parameters generate various
types of oscillations, often found in neocortical and thalamic
neurons (Connors and Gutnick, 1990; Gray and McCormick,
1996; Izhikevich, 2000). The initial conditions are set to v =
−63 and u = bv. Synaptic currents or injected DC-currents
are delivered via I. We consider a fixed parameter regime
that produces different firings for a single Izhikevich neuron
(Izhikevich, 2003, 2004), i.e., a = 0.1, b = 0.2 with reset
parameters c = −65 and d = 8, what we call set I. We note that
for I < 4, the system of Eqs. (1) and (2) does not show any spiking
or bursting behavior. Thus, the firing patterns can be obtained
for I ≥ 4. Simulations of the systems of ordinary differential
equations were performed using the fourth-order Runge-Kutta
method with a fixed time step of 0.01, as the simulation results
with a smaller time step did not show any significant differences.
Bifurcation diagrams of the deterministic dynamical model in
the reduced-order network were computed using the MatCont
software package (Dhooge et al., 2003).

2.2. Formulation of the Network of Model
Neurons
We construct an Erdős-Rényi (ER) random network of N = 500
nodes with average node-degree 5. Then, we set up a mixed
population of Izhikevich neurons to model neural activity on
the nodes of the random network, where 70% of them exhibit
oscillatory behavior (self-sustained spiking oscillations, for I =
10) as shown in Figure 1B (in blue) and 30% are in quiescent
states (for I = 3), shown in Figure 1B (in red) by setting all the
parameters in the tonic spiking condition (see set I). The system
is coupled via the membrane voltage vwith a mean-field diffusive
coupling. In particular, the equations of the N coupled neurons
(i = 1, 2, . . . ,N) in the network are described by

v̇i = 0.04v2i + 5vi + 140− ui + Ii +
K

∑N
j=1 Aij

N∑

j=1
Aij(vj − vi),

u̇i = a(bvi − ui),

with the constraint that if vi ≥ 30, then, vi ← c and ui ←
ui + d. A is the adjacency matrix of the random network, K
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FIGURE 1 | Membrane potential v and spatiotemporal plots. (A) One self-oscillatory spiking neuron in the absence of coupling (K = 0) and a time-series of a

quiescent node is shown in (B). (C) The spatiotemporal plot for all neurons in the random network. The first 350 nodes are self-oscillatory. Nodes from 351 to 500 are

in steady states (see the 4 zoom-ins). (D,E) The coupling is increased to K = 0.3. There are several types of MMOs observed in the quiescent subpopulation. Three

nodes from the quiescent subpopulation are marked and the time series of each node over the course of time is shown in (E). (F) Spatiotemporal plot of all neurons in

the random network. The quiescent nodes are desynchronized with each other. (G,H) The coupling is increased to K = 0.4. ISI of spiking nodes are increased and

decreased for quiescent nodes. Desynchronized MMOs (shown in (H), where two quiescent nodes have been randomly chosen) are still visible in the quiescent

population. (I) Spatiotemporal plot that shows the variation in spikes for all nodes in the random network. (J–L) are for K = 1. The entire population fires (without any

MMOs appearing) with almost the same frequencies. Clearly two subpopulation are separately synchronized.

the coupling strength and Si =
∑N

j=1 Aij the degree of the ith

node. We consider I1 = . . . = Ip = 3, where
p
N = 0.3 and

Ip+1 = . . . = IN = 10, where q = 1 − p
N = 0.7 that lead

to the time evolution shown in Figures 1A,B. In the absence
of coupling, the oscillatory nodes (70%) show desynchronized
spiking and the rest of them (30%) converge to fixed points (see
spatiotemporal plot in Figure 1C, where the inset is a zoom-
in). With the increase of the coupling strength K, the quiescent
neural subpopulation exhibits different transitions to oscillatory
behavior. Generally, for weak coupling, this subpopulation
generates MMOs and subthreshold oscillations. One type of
MMOs shows that between two consecutive LAOs, there exist
two SAOs. Interestingly, other aperiodic MMOs may coexist in
this subpopulation. Interspike intervals (ISI) are not identical and

the number of small amplitude spikes in SAOs within two large
amplitude spikes may vary in the entire signal. We have found
three types of MMOs shown in Figure 1E, randomly picked

from the quiescent subpopulation in which the average interspike

intervals, 〈ISI〉, differ significantly. We will analyze such mixed

MMOs behavior and variation of SAOs between LAOs in the next
subsections. This study unveils the generation and annihilation

of MMOs within a subpopulation of neurons. We note that, the
oscillatory subpopulation shows almost coherent tonic spiking
(Figure 1D). The spatiotemporal plot of all nodes is shown in
Figure 1F, where quiescent nodes are desynchronized (a zoom-in
is shown on the right).With further increase of the coupling (K =
0.4), the quiescent subpopulation exhibits MMOs, however the
number of LAOs between two spikes is considerably decreased.

Frontiers in Computational Neuroscience | www.frontiersin.org 4 June 2020 | Volume 14 | Article 49

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles


Ghosh et al. Mixed Mode Oscillations in Random Networks

The distance between two consecutive spikes is also decreased
compared to the previous coupling case, therefore, 〈ISI〉 is also
decreased (see Figure 1H, where two randomly chosen nodes
have been depicted in the panels of the figures. Interestingly,
the oscillatory subpopulation remains in the same firing regime
and the network shows asynchronous behavior (Figures 1G,I)
for all nodes. Finally, for K = 1, the complete population
switches to tonic spiking (Figures 1J–L) with almost identical
〈ISI〉, and the two subpopulations form two clusters when they
are separately synchronized.

2.2.1. MMOs in the Quiescent Subpopulation: Impact

of Spiking Neighbors of Quiescent Nodes
Here, we elaborate on the quiescent population and on several
coexisting MMOs that emerge. Figure 2A shows the network
structure with a mixed population (spiking neurons are shown
with blue filled circles and quiescent nodes with red filled circles).
We first observe the emergence of MMOs in the quiescent nodes
at weak coupling. At K = 0.3, we have isolated three red
nodes with different neighbor distributions. The red node (left)
with 7 neighbors shows MMOs in which three large amplitude
spikes exist within 100 time units (see Figure 2B). ISI are not
constant and the number of small amplitude spikes between
two large amplitude consecutive spikes is also varied in SAOs.
The neighbors of this node have two silent (blue) and five
oscillatory nodes (red). The number of spikes is slightly increased
for another neuron originally in a quiescent state (Figure 2C)
and the number of small amplitude spikes in LAOs is varied
from 4 to 5. This neuron has 11 neighbors in which 7 nodes are
self-oscillatory (blue) in the absence of coupling.

Next, we define the parameter ri to search for the presence of
oscillatory nodes in the neighborhood of quiescent node (i) by

ri =
Noi∑N
j=1 Aij

=
Noi

Si
, (3)

where Noi is the number of spiking oscillators connected with
the ith quiescent node and Si the degree of the ith node. The
neighbors of a third selected node are all oscillatory (r = 1)
and the node reveals lower ISI as there is comparably fast
switching from SAOs to LAOs (see Figure 2D). Therefore, the
ratio of adjacent spiking nodes (blue) with respect to neighbors,
Si, determines the effect of the average ISI, 〈ISI〉, on the ith
quiescent node (red). To understand the effect of the average r
on 〈ISI〉, we have considered three couplings: K = 0.3, 0.4, and
0.6, shown in Figure 2E with upper red line (filled circle), middle
red line (filled diamond) and lower red line (star), respectively.
For the weaker couplings K = 0.3 and K = 0.4, and for
small r, 〈ISI〉 exhibits significantly higher values (25 time units
with high fluctuations). For higher values of r ≈ 1, 〈ISI〉 is
decreased by 10 time units. The results confirm that, a red node
with smaller r (where the presence of red (quiescent) neighbors is
significantly larger, have strong impact on the red node) reduces
the number of spikes compared to the case where r ≈ 1. For
even higher couplings (K = 0.6, red line with star marker),
〈ISI〉 decreases to around 5 and the impact of r on〈ISI〉 is not
prominent at even higher couplings (not shown herein). We
note that, as we have seen in Figures 2B–D, smaller changes
in r (r = 2

7 ≈ 0.28, r = 7
11 ≈ 0.63 and r = 1 for

(b), (c) and (d), respectively) result in small amplitude spikes
in SAOs between two large amplitude spikes (LAOs). 〈ISI〉 and

FIGURE 2 | The impact of neighbors of MMOs on quiescent nodes. (A) The random network of 500 nodes (Bastian et al., 2009). Red nodes are in quiescent and blue

in self-oscillatory states. (B) One red node is identified with degree 7. Five of them are spiking oscillators (r ≈ 0.28). Irregular MMOs are observed here. (C) The second

red node with r ≈ 0.63. MMOs with considerably lower ISI are shown. (D) All neighbors are self-oscillatory (r = 1), MMOs with highly frequent spikes are observed. For

(B–D), the coupling strength is fixed at K = 0.3. (E) Impact of r on 〈ISI〉. The 〈ISI〉 is continuously decreased if we check for higher values of r and the average value

saturates below 15 (red curve with black filled circles, red curve with black filled diamonds) for K = 0.3 and 0.4, respectively. For even higher coupling (K = 0.6, red

curve with black filled stars), r contributes less to 〈ISI〉 with the value fluctuating between 5 and 10.
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spikes in SAOs of quiescent nodes are determined by two key
factors: the number of neighboring spiking neurons and the
coupling strength. Therefore, we conclude that 〈ISI〉 decreases if
the number of oscillatory nodes in the neighbor increases.

2.2.2. MMOs of Quiescent Nodes: The Role of

Electrical Coupling
Next, we choose randomly a quiescent node (red) and check
the effect of electrical coupling strength on MMOs connected
to that node. At the lower coupling K = 0.3, the node exhibits
three small amplitude spikes (SAOs) between two large amplitude
spikes (Figure 3B). To quantify the spike distribution, we define

fSAO =
SSAO

Sall
,

fLAO =
SLAO

Sall
,

where SSAO, SLAO are the numbers of small and large amplitude
spikes, respectively, and Sall the count of all spike amplitudes
in the same interval. In Figure 3B, three small amplitude
spikes appear consecutively and are shown by star, triangle,
and hexagon markers, respectively. They are distributed with
almost similar amplitudes (see left part of Figure 3A shown in
light blue). As the membrane voltage is periodic, fLAO shares
almost equal probability with fSAO. We note that, we have
used f in Figure 3B instead of fSAO or fLAO to accumulate the
information of the entire spiking frequency set. If we increase
the coupling to K = 0.4, we see that three small amplitude
spikes converge to a single one (Figure 3C, diamond marker),
the oscillatory neighbors influence the oscillation of the quiescent

node and they are equiprobable (the light and deep blue bars
in Figure 3A are almost of the same amplitudes). At K = 0.6,
the small amplitude spikes appear recurrently (circle marker in
Figure 3D) after two large amplitude spikes and give rise to
MMBOs. Interestingly, simpleMMOs change into more complex
dynamics, i.e., MMBOs. Therefore, fLAO (deep blue bar) is higher
than fSAO for small amplitude spikes (light blue bar). When the
coupling is set to 1, the MMOs are completely lost (no light
blue bar appears in the right-hand side of Figure 3A, see also
the spiking behavior in Figure 3E). The quiescent neighbors
at weak coupling contribute strongly to the generation of
mixed-mode oscillations. When we increase the coupling, more
information is shared among nearest neighbor nodes and long
distant neighbors. The dynamics in the network, including that
of quiescent nodes, is characterized by large amplitude spikes.
We note that, the nodes in the random network are dominated
by self-oscillatory neurons (70%) and for higher coupling, they
control the spiking behavior in the entire network, therefore
quiescent nodes cannot reflect MMOs for higher couplings.

2.2.3. Average ISI vs. Coupling Strength K in Neural

Subpopulations
Here, we scan the average ISI, 〈ISI〉, interval of the entire
subpopulation varying the coupling strength K. The 〈ISI〉 of
oscillatory (blue) nodes in the network is slightly increased (see
Figure 4A with filled blue circles) for weaker couplings and
saturates around 5.6 time units when it is increased (for K >

1.2). On the other hand, the 〈ISI〉 of red quiescent nodes is
decreased when the coupling is increased. For small couplings,
〈ISI〉 shows strong fluctuations (shown by black lines with error
bars in the backdrop of red filled circles, Figure 4B) due to

FIGURE 3 | Impact of coupling K on MMOs of a quiescent (red) node. (A) Probability distribution of spikes in SAOs (light blue) and LAOs (deep blue) for K = 0.3, 0.4,

0.6, and 1 from left to right, respectively. (B) The time evolution for K = 0.3. Three small amplitude oscillations (star, triangle, and hexagon) appear between two

consecutive large amplitude spikes. (C) One small amplitude spike (diamond) appears between two large amplitude spikes at K = 0.4. (D) One small amplitude spike

(black circle) appears after two spikes emerging together for K = 0.6. Therefore, the probability of small amplitude spikes is decreased [third part of (A)] and results to

the emergence of MMBOs. (E) Small spikes vanish at higher coupling (K = 1), therefore MMOs are lost and tonic spikes are generated, instead.
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FIGURE 4 | 〈ISI〉,
√
fSAO and CV as a function of coupling K. (A) 〈ISI〉 for all spiking oscillators (in total 350). At small coupling, 〈ISI〉 is smaller, i.e., the spike

frequencies are comparatively higher and it saturates around 5.6 for higher couplings. The fluctuations are negligible here, i.e., all spiking nodes have common

frequencies for all couplings considered. (B) Quiescent nodes. For small couplings, the nodes exhibit diverse desynchronized MMOs (shown in black, with error bars).

〈ISI〉 saturates at higher couplings. (C) Relation between CV (red line with marker) and
√
fSAO (brown line with marker) as a function of the coupling strength K.

the desynchronized 〈ISI〉 in MMOs of the quiescent nodes. The
red and blue lines in Figures 4A,B are plotted from the two
coupled reduced models derived from the collective behavior
of the connected network described in the next section. For
small couplings, we see that the 〈ISI〉 of each quiescent node
are dissimilar (see Figure 2), i.e., the firing rate varies from one
node to another. We scan the entire average ISI interval of the
quiescent subpopulation for a range of coupling strengths to
understand the fluctuations in ISI. To quantify these fluctuations,
we calculate the coefficient of variation, CV , of ISI of the
quiescent subpopulation calculated from the numerical data
(Figure 4C, red line with dots). CV becomes zero after a certain
coupling strength, as there is no variation in spike sequences and
SAOs completely vanish. The brown line in Figure 4C reflects
the frequency of peaks in the SAOs, which is zero for higher
couplings, where CV is also zero, thus revealing a close relation
between CV2 and fSAO. In the Supplementary Material, we
present an analytical approach that relates the two quantities and
offer a plausible explanation for the discrepancy observed for
small coupling strengths.

3. REDUCED MODEL DESCRIPTION

It is clear from Figure 1 that neurons within subpopulations are
synchronized for higher couplings, and cluster synchronization
appears within subpopulations. This motivates us to pursue
further an approach to construct a reduced model of two
coupled systems which is able to encode the information in the
large network. Since we have considered a random network in
which the node-degrees follow the Poisson distribution, we can
approximate the degree of each node/neuron by the average
degree of the considered network (Hens et al., 2015; Sasai et al.,
2015). Therefore, we can assume that Sj = 〈S〉 for j = 1, . . . ,N.
The number of spiking oscillators in the neighborhood of each
oscillator is expected to be (1 − p

N )S =
q
N S and that of quiescent

oscillators,
p
N S, where p is the number of quiescent oscillators

in the network. We set vj = VQ for j = 1, . . . , p and vl =
VS for l = p + 1, . . . ,N. Over a certain coupling strength,
within different clusters, the quiescent and spiking oscillators
are synchronized separately. Therefore, by representing the two
clustered subpopulations by two nodes, we obtain the following

reduced system of coupled equations

V̇S = 0.04V2
S + 5VS + 140− US + IS + Kp(VQ − VS), (4)

U̇S = a(bVS − US), (5)

V̇Q = 0.04V2
Q + 5VQ + 140− UQ + IQ + Kq(VS − VQ), (6)

U̇Q = a(bVQ − UQ), (7)

with the constraint equation that if VQ ≥ 30, then VQ ← c
and UQ ← UQ + d. These conditions are also valid for spiking
nodes, i.e., for Eqs. (4) and (5) for spike oscillators with IS = 10
and for Eqs. (6) and (7) for quiescent oscillators with IQ = 3.
We note that, for homogeneous networks, there will be no effect
of the assortativity (degree-degree correlation) on MMOs or on
collective firing states as the number of quiescent oscillators in
the neighborhood of each oscillator will not be affected. The
〈ISI〉 plotted for VS and VQ as a function of K is shown in
Figures 4A,B with red and blue dots, respectively. The results
almost match with the result for the random network (filled blue
and red circles). A phase diagram of the coupled reduced model
with respect to

p
N and K is shown in Figure 5A. The diagram

is drawn by monitoring VQ. The MMOs and spike regions are
identified with the help of f and quiescent (death) states by noting
the variation of the peak values of VQ. The dark-red regime is
the steady state island, where all neurons in the random network
remain in quiescent states. The regime of MMOs appears for
weak couplings (for all p) shown in orange. The uncoupled
quiescent nodes are desynchronized in this regime. All nodes
collectively (and individually) fire at higher couplings for p < 0.9
(pink region). The boundaries of each region are consistent with
the results from the random network. To confirm further the
onset of steady states, we have performed a bifurcation analysis
to check the boundaries while we have changed

p
N from 0.8 to

1 for coupling strengths K = 2 and K = 3, respectively (see
Figures 5B,C). The stable fixed point, VQ, is shown with thick
green line in both cases. This fixed point (node) collides with a
saddle point and vanishes at

p
N ≈ 0.87. The system shows spiking

oscillations below
p
N ≈ 0.87 in both cases. Finally, for

p
N = 0.95,

the system changes its dynamics from MMOs to a steady state at
K ≈ 0.77, as evidenced in Figure 5D.
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FIGURE 5 | Phase-space diagram of the reduced quiescent node model as a function of K and relative size of quiescent oscillators in the random network. The

emergence of MMOs, synchronized spiking oscillations and quiescent states are depicted in orange, pink, and dark red, respectively. The boundaries of quiescent

states with other regimes are demarcated by the bifurcation scenario. (B,C) Stable fixed points vanish through a saddle-node (SN) bifurcation at p
N
≈ 0.87 for K = 2

and 3, closely matched with the phase diagram. Note that for higher couplings, the boundary of quiescent states does not depend on p
N
. (D) Bifurcation analysis as a

function of K, for p
N
= 0.95 [dashed vertical line in (A)]. The onset of quiescent states occurs at K ≈ 0.77.

4. EMERGENCE OF MMOS IN A
SMALL-WORLD NETWORK

Following up the previous studies on a random network of
neural computation, we construct here a small-world network
of N = 500 nodes. A closed non-local ring is constructed with
8 adjacent neighbors. A rewire strategy (Watts and Strogatz,
1998) is implemented with a probability 0.2 to construct the final
network (see Figure 6A). To understand the impact of oscillatory
neighbors (i.e., blue nodes) (see Equation 3) on quiescent nodes
(red), we have identified four quiescent nodes (red) with different
r. The network comprises 40% quiescent nodes. Nodes with
higher percentage of oscillatory neighbors show spiking and
irregular MMOs that appear between two successive spikes
(Figures 6B,E, where r = 0.75 and 1, respectively). However, the
red nodes with a smaller percentage of oscillatory neighbors are
unable to fire (r ≈ 0.4, Figure 6C) or irregular spikes appear with
higher 〈ISI〉 value (r = 0.5, Figure 6D). The coupling strength is
fixed at K = 0.3. Figure 6E shows the impact of r on 〈ISI〉, which
is seen to continuously decrease for nodes with large percentage
of oscillatory neighbors (r ≫ 0.1). The average 〈ISI〉 saturates
below 30 (red curve with black filled circles) for K = 0.3. For this
coupling strength, diverse MMOs can be seen in Figures 6B–E.
For the higher coupling strength K = 0.4, 〈ISI〉 converges to 10
(red curve with black filled diamonds). r contributes less to 〈ISI〉
with the value fluctuating around 10 for K = 0.6 (red curve with
black filled stars).

5. CONCLUSIONS

In this paper, we sought to study MMOs in a random and
a small-world network of diverse excitable Izhikevich neurons

for different coupling strengths by introducing the generation
of complex oscillations. We have observed MMBOs, which are
periodic in nature and are relevant to the GnRH model neuron
as the dynamical behavior of these neurons in a small-size

network can be useful in the studies for epilepsy (Desroches et al.,
2013). We have confirmed that a certain mixed population of

quiescent and oscillatory nodes can give rise to several types

of MMOs and MMBOs in the two types of networks. MMOs
have potential applications in biophysical and other systems.
In complex systems, various mechanisms exist during different
oscillatory phases that generate spike patterns between fast and
slow amplitude motion together with spikes and subthreshold
oscillations, termed MMOs. It was observed that pyramidal
neurons are capable of exhibiting two types of MMOs and
their characterization was analyzed under antiepileptic drug
conditions (Babak et al., 2017). Small amplitude oscillations
(<10mV) give rise to intrinsic neuronal phenomena that exist
during the synaptic transmission block (Alonso and Llinás, 1989;
Zemankovics et al., 2010). Actually, it has been observed in
many types of neurons, such as in neurons in the thalamus,
hippocampal CA1 neurons, neocortex neurons, spinal motor
neurons, etc. (Puil et al., 1994; Gutfreund et al., 1995; Narayanan
and Johnston, 2007; Iglesias et al., 2011). It was suggested that
MMOs can be responsible for the transition from high firing
rates to quiescent states by reducing neuronal gain (Iglesias
et al., 2011; Golomb, 2014). Many studies showed the impacts of
small amplitude oscillations/subthreshold oscillations (STOs) on
diverse neuronal responses such as spike clustering (Puil et al.,
1994; Gutfreund et al., 1995; Narayanan and Johnston, 2007),
synaptic plasticity (Narayanan and Johnston, 2007; Bazzigaluppi
et al., 2012), rhythmic activities, synchronization (Acker et al.,
2003; Engel et al., 2008), etc.
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FIGURE 6 | The impact of neighbors of MMOs on quiescent nodes. (A) The small-world network of 500 nodes (Watts and Strogatz, 1998) with p = 0.2 and 〈S〉 = 8.

(B) One red node (quiescent) is identified with node-degree 8. Six of them are spiking oscillators (r = 0.75). Irregular MMOs are observed here. (C) The second red

node with r ≈ 0.4. The node shows sub-threshold oscillations only. (D) 50% of the neighbor nodes are spiking oscillators and irregular spikes appear with high 〈ISI〉.
(E) All neighbors are self-oscillatory (r = 1) and MMOs with highly frequent spikes are observed. For (B–E), the coupling strength is fixed at K = 0.3. (F) Impact of r on

〈ISI〉. The 〈ISI〉 is continuously decreased if we increase r. The average value saturates below 30 (red curve with filled circles) for K = 0.3 and converges to 10 (red

curve with black filled diamonds) for K = 0.4. r contributes less to 〈ISI〉 with the value fluctuating around 10 for K = 0.6 (red curve with black filled stars).

Here, random networks with various injected electrical
current stimuli go through different transition phases of
oscillations for various coupling strengths and emerging STOs
with spikes, i.e., MMOs. First, the depolarization in membrane
voltages show small amplitude oscillations around steady state
potentials, and with further depolarization, gives rise to spikes,
e.g., to MMOs (Jalics et al., 2010). STOs play an important role
in the emergence of MMOs and in controlling spike clustering
(Torben-Nielsen et al., 2012; Latorre et al., 2016).

Furthermore, MMOs play an important role in neuronal
functional mechanisms, namely, the STOs affect the sensitivity
of neurons for injected input stimuli, the amplification of
synaptic inputs and network synchronization to specific firing
frequencies (Babak et al., 2017). The mechanism of MMOs
produced in complex dynamical systems remains a challenging
task. In the excitable pituitary cell model, pseudo-plateau
bursting is canard-induced MMOs (Vo et al., 2010). It correlates
electrophysiological behavior of SAOs on clustering spikes, and
shows the influences of ionic currents to the firing rate and spike
patterns in the network.

Finally, experimental and numerical studies show that
MMOs occur in oscillatory rhythms in brain functioning
from a single neuron to global neural networks (Erchova and
McGonigle, 2008). In this study, we investigated both types of
oscillations, MMOs and MMBOs. The results may be useful
to Neuroscientists and those working on the mathematical
modeling and dynamical behavior of cortical neurons based in
random neural networks. We plan in a future publication to

explore the impact of excitatory and inhibitory connections in
Izhikevich neurons and how they give rise to the emergence of
MMOs (Noback et al., 2005; Deco et al., 2014; Pastore et al., 2018).
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Krupa, M., Popović, N., Kopell, N., and Rotstein, H. G. (2008). Mixed-mode

oscillations in a three time-scale model for the dopaminergic neuron. Chaos

18:015106. doi: 10.1063/1.2779859

Kummer, U., Olsen, L. F., Dixon, C. J., Green, A. K., Bornberg-Bauer, E., and Baier,

G. (2000). Switching from simple to complex oscillations in calcium signaling.

Biophys. J. 79, 1188–1195. doi: 10.1016/S0006-3495(00)76373-9

Latorre, R., Torres, J. J., and Varona, P. (2016). Interplay between subthreshold

oscillations and depressing synapses in single neurons. PLoS ONE 11:e0145830.

doi: 10.1371/journal.pone.0145830

Ma, J., and Tang, J. (2017). A review for dynamics in neuron and neuronal network.

Nonlinear Dyn. 89:1559. doi: 10.1007/s11071-017-3565-3

Frontiers in Computational Neuroscience | www.frontiersin.org 10 June 2020 | Volume 14 | Article 49

https://doi.org/10.1023/a:1024474819512
https://doi.org/10.1038/342175a0
https://doi.org/10.1063/1.4939837
https://doi.org/10.1016/j.neunet.2018.10.008
https://doi.org/10.1371/journal.pcbi.1004372
https://doi.org/10.1371/journal.pone.0178244
https://doi.org/10.7554/eLife.13403
https://doi.org/10.3389/fncir.2012.00091
https://doi.org/10.1371/journal.pone.0181773
https://doi.org/10.1016/j.physa.2019.122671
https://doi.org/10.1016/j.neunet.2017.01.010
https://doi.org/10.1021/j100175a053
https://doi.org/10.1063/1.2903177
https://doi.org/10.1063/1.3378112
https://doi.org/10.1016/0166-2236(90)90185-D
https://doi.org/10.3389/fncom.2016.00133
https://doi.org/10.1142/5944
https://doi.org/10.1523/JNEUROSCI.5068-13.2014
https://doi.org/10.1137/100791233
https://doi.org/10.1063/1.4827026
https://doi.org/10.1063/1.2799471
https://doi.org/10.1145/779359.779362
https://doi.org/10.1137/S0036139903431233
https://doi.org/10.1007/BFb0062381
https://doi.org/10.1152/jn.01282.2007
https://doi.org/10.1063/1.2900015
https://doi.org/10.1109/ASCC.2015.7244842
https://doi.org/10.1371/journal.pone.0109205
https://doi.org/10.1126/science.274.5284.109
https://doi.org/10.1063/1.2790372
https://doi.org/10.1113/jphysiol.1995.sp020611
https://doi.org/10.1103/PhysRevE.92.022915
https://doi.org/10.1523/JNEUROSCI.6363-10.2011
https://doi.org/10.1142/S0218127400000840
https://doi.org/10.1109/TNN.2003.820440
https://doi.org/10.1109/TNN.2004.832719
https://doi.org/10.7551/mitpress/2526.001.0001
https://doi.org/10.1080/14689360903535760
https://doi.org/10.3389/fncom.2018.00059
https://doi.org/10.1088/0951-7715/27/7/1555
https://doi.org/10.1063/1.2779859
https://doi.org/10.1016/S0006-3495(00)76373-9
https://doi.org/10.1371/journal.pone.0145830
https://doi.org/10.1007/s11071-017-3565-3
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles


Ghosh et al. Mixed Mode Oscillations in Random Networks

Malagarriga, D., García-Vellisca, M., Villa, A. E., Buldú, J., García-

Ojalvo, J., and Pons, A. (2015). Synchronization-based computation

through networks of coupled oscillators. Front. Comput. Neurosci. 9:97.

doi: 10.3389/fncom.2015.00097

Mondal, A., and Upadhyay, R. K. (2018). Diverse neuronal responses of a

fractional-order Izhikevich model: journey from chattering to fast spiking.

Nonlinear Dyn. 91, 1275–1288. doi: 10.1007/s11071-017-3944-9

Muratov, C. B., and Vanden-Eijnden, E. (2008). Noise-induced mixed-mode

oscillations in a relaxation oscillator near the onset of a limit cycle. Chaos

18:015111. doi: 10.1063/1.2779852

Narayanan, R., and Johnston, D. (2007). Long-term potentiation in rat

hippocampal neurons is accompanied by spatially widespread changes

in intrinsic oscillatory dynamics and excitability. Neuron 56, 1061–1075.

doi: 10.1016/j.neuron.2007.10.033

Noback, C. R., Ruggiero, D. A., Demarest, R. J., and Strominger, N. L. (2005). The

Human Nervous System: Structure and Function. Totowa, NJ: Humana Press.

Ostwald, W. (1900). Periodische erscheinungen bei der auflösung des

chroms in säuren. Z. Phys. Chem. 35, 204–256. doi: 10.1515/zpch-1900-

0115

Pastore, V. P., Massobrio, P., Godjoski, A., and Martinoia, S. (2018). Identification

of excitatory-inhibitory links and network topology in large-scale neuronal

assemblies from multi-electrode recordings. PLoS Comput. Biol. 14:e1006381.

doi: 10.1371/journal.pcbi.1006381

Postnov, D. E., Sosnovtseva, O. V., Scherbakov, P., and Mosekilde, E. (2008).

Multimode dynamics in a network with resource mediated coupling. Chaos

18:015114. doi: 10.1063/1.2805194

Protachevicz, P. R., Borges, F. S., Lameu, E. L., Ji, P., Iarosz, K. C., Kihara, A. H.,

et al. (2019). Bistable firing pattern in a neural network model. Front. Comput.

Neurosci. 13:199. doi: 10.3389/fncom.2019.00019

Puil, E., Meiri, H., and Yarom, Y. (1994). Resonant behavior and

frequency preferences of thalamic neurons. J. Neurophysiol. 71, 575–582.

doi: 10.1152/jn.1994.71.2.575

Rotstein, H. G., and Kuske, R. (2006). Localized and asynchronous patterns via

canards in coupled calcium oscillators. Phys. D Nonlinear Phenomena 215,

46–61. doi: 10.1016/j.physd.2006.01.007

Rotstein, H. G., Wechselberger, M., and Kopell, N. (2008). Canard induced mixed-

mode oscillations in amedial entorhinal cortex layer II stellate cell model. SIAM

J. Appl. Dyn. Syst. 7, 1582–1611. doi: 10.1137/070699093

Rubin, J., and Wechselberger, M. (2008). The selection of mixed-mode oscillations

in a Hodgkin-Huxley model with multiple timescales. Chaos 18:015105.

doi: 10.1063/1.2789564

Sasai, T., Morino, K., Tanaka, G., Almendral, J. A., and Aihara, K. (2015).

Robustness of oscillatory behavior in correlated networks. PLoS ONE

10:e0123722. doi: 10.1371/journal.pone.0123722

Schmitz, R., Graziani, K., and Hudson, J. L. (1977). Experimental evidence

of chaotic states in the Belousov-Zhabotinskii reaction. J. Chem. Phys. 67,

3040–3044. doi: 10.1063/1.435267

Showalter, K., Noyes, R. M., and Bar-Eli, K. (1978). A modified oregonator model

exhibiting complicated limit cycle behavior in a flow system. J. Chem. Phys. 69,

2514–2524. doi: 10.1063/1.436894

Teka, W. W., Upadhyay, R. K., and Mondal, A. (2018). Spiking and bursting

patterns of fractional-order Izhikevich model. Commun. Nonlinear Sci. Num.

Simul. 56, 161–176. doi: 10.1016/j.cnsns.2017.07.026

Toporikova, N., Tabak, J., Freeman, M. E., and Bertram, R. (2008). A-type k+

current can act as a trigger for bursting in the absence of a slow variable.Neural

Comput. 20, 436–451. doi: 10.1162/neco.2007.08-06-310

Torben-Nielsen, B., Segev, I., and Yarom, Y. (2012). The generation

of phase differences and frequency changes in a network model of

inferior olive subthreshold oscillations. PLoS Comput. Biol. 8:e1002580.

doi: 10.1371/journal.pcbi.1002580

Upadhyay, R. K., Mondal, A., and Teka, W. W. (2017). Mixed mode

oscillations and synchronous activity in noise induced modified Morris-Lecar

neural system. Int. J. Bifurc. Chaos 27:1730019. doi: 10.1142/S02181274173

00191

Vo, T., Bertram, R., Tabak, J., and Wechselberger, M. (2010). Mixed mode

oscillations as a mechanism for pseudo-plateau bursting. J. Comput. Neurosci.

28, 443–458. doi: 10.1007/s10827-010-0226-7

Watts, D., and Strogatz, S. (1998). Collective dynamics of ‘small-world’ networks.

Nature 393, 440–442. doi: 10.1038/30918

Zeldenrust, F., Wadman, W. J., and Englitz, B. (2018). Neural coding with

bursts-current state and future perspectives. Front. Comput. Neurosci. 12:48.

doi: 10.3389/fncom.2018.00048

Zemankovics, R., Káli, S., Paulsen, O., Freund, T. F., and Hájos, N. (2010).

Differences in subthreshold resonance of hippocampal pyramidal cells and

interneurons: the role of H-current and passive membrane characteristics. J.

Physiol. 588, 2109–2132. doi: 10.1113/jphysiol.2009.185975

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Copyright © 2020 Ghosh, Mondal, Ji, Mishra, Dana, Antonopoulos and Hens. This

is an open-access article distributed under the terms of the Creative Commons

Attribution License (CC BY). The use, distribution or reproduction in other forums

is permitted, provided the original author(s) and the copyright owner(s) are credited

and that the original publication in this journal is cited, in accordance with accepted

academic practice. No use, distribution or reproduction is permitted which does not

comply with these terms.

Frontiers in Computational Neuroscience | www.frontiersin.org 11 June 2020 | Volume 14 | Article 49

https://doi.org/10.3389/fncom.2015.00097
https://doi.org/10.1007/s11071-017-3944-9
https://doi.org/10.1063/1.2779852
https://doi.org/10.1016/j.neuron.2007.10.033
https://doi.org/10.1515/zpch-1900-0115
https://doi.org/10.1371/journal.pcbi.1006381
https://doi.org/10.1063/1.2805194
https://doi.org/10.3389/fncom.2019.00019
https://doi.org/10.1152/jn.1994.71.2.575
https://doi.org/10.1016/j.physd.2006.01.007
https://doi.org/10.1137/070699093
https://doi.org/10.1063/1.2789564
https://doi.org/10.1371/journal.pone.0123722
https://doi.org/10.1063/1.435267
https://doi.org/10.1063/1.436894
https://doi.org/10.1016/j.cnsns.2017.07.026
https://doi.org/10.1162/neco.2007.08-06-310
https://doi.org/10.1371/journal.pcbi.1002580
https://doi.org/10.1142/S0218127417300191
https://doi.org/10.1007/s10827-010-0226-7
https://doi.org/10.1038/30918
https://doi.org/10.3389/fncom.2018.00048
https://doi.org/10.1113/jphysiol.2009.185975
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

	Emergence of Mixed Mode Oscillations in Random Networks of Diverse Excitable Neurons: The Role of Neighbors and Electrical Coupling
	Recommended Citation
	Authors

	Emergence of Mixed Mode Oscillations in Random Networks of Diverse Excitable Neurons: The Role of Neighbors and Electrical Coupling
	1. Introduction
	2. Biophysical Model and Random Network
	2.1. Model Description
	2.2. Formulation of the Network of Model Neurons
	2.2.1. MMOs in the Quiescent Subpopulation: Impact of Spiking Neighbors of Quiescent Nodes
	2.2.2. MMOs of Quiescent Nodes: The Role of Electrical Coupling
	2.2.3. Average ISI vs. Coupling Strength K in Neural Subpopulations


	3. Reduced Model Description
	4. Emergence OF MMOs in a Small-World Network
	5. Conclusions
	Data Availability Statement
	Author Contributions
	Funding
	Supplementary Material
	References


